H4 polytope

From HandWiki
Short description: Four-dimensional geometric objects


Schlegel wireframe 120-cell.png
120-cell
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Schlegel wireframe 600-cell vertex-centered.png
600-cell
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png

In 4-dimensional geometry, there are 15 uniform polytopes with H4 symmetry. Two of these, the 120-cell and 600-cell, are regular.

Visualizations

Each can be visualized as symmetric orthographic projections in Coxeter planes of the H4 Coxeter group, and other subgroups.

The 3D picture are drawn as Schlegel diagram projections, centered on the cell at pos. 3, with a consistent orientation, and the 5 cells at position 0 are shown solid.

# Name Coxeter plane projections Schlegel diagrams Net
F4
[12]
[20] H4
[30]
H3
[10]
A3
[4]
A2
[3]
Dodecahedron
centered
Tetrahedron
centered
1 120-cell
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
{5,3,3}
120-cell t0 F4.svg 60px 60px 60px 60px 120-cell t0 A2.svg Schlegel wireframe 120-cell.png 120-cell net.png
2 rectified 120-cell
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
r{5,3,3}
120-cell t1 F4.svg 60px 60px 60px 60px 120-cell t1 A2.svg Rectified 120-cell schlegel halfsolid.png Rectified hecatonicosachoron net.png
3 rectified 600-cell
CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
r{3,3,5}
600-cell t1 F4.svg 60px 60px 60px 60px 600-cell t1 A2.svg Rectified 600-cell schlegel halfsolid.png Rectified hexacosichoron net.png
4 600-cell
CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
{3,3,5}
600-cell t0 F4.svg 60px 60px 60px 60px 600-cell t0 A2.svg Schlegel wireframe 600-cell vertex-centered.png Stereographic polytope 600cell.png 600-cell net.png
5 truncated 120-cell
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
t{5,3,3}
120-cell t01 F4.svg 60px 60px 60px 60px 120-cell t01 A2.svg Schlegel half-solid truncated 120-cell.png Truncated hecatonicosachoron net.png
6 cantellated 120-cell
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
rr{5,3,3}
120-cell t02 H3.png 60px 120-cell t02 B3.png Cantellated 120 cell center.png Small rhombated hecatonicosachoron net.png
7 runcinated 120-cell
(also runcinated 600-cell)
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,3{5,3,3}
120-cell t03 H3.png 60px 120-cell t03 B3.png Runcinated 120-cell.png Small disprismatohexacosihecatonicosachoron net.png
8 bitruncated 120-cell
(also bitruncated 600-cell)
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
t1,2{5,3,3}
120-cell t12 H3.png 60px 120-cell t12 B3.png Bitruncated 120-cell schlegel halfsolid.png Hexacosihecatonicosachoron net.png
9 cantellated 600-cell
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,2{3,3,5}
600-cell t02 F4.svg 60px 60px 60px 60px 600-cell t02 B3.svg Cantellated 600 cell center.png Small rhombated hexacosichoron net.png
10 truncated 600-cell
CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t{3,3,5}
600-cell t01 F4.svg 60px 60px 60px 60px 600-cell t01 A2.svg Schlegel half-solid truncated 600-cell.png Truncated hexacosichoron net.png
11 cantitruncated 120-cell
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
tr{5,3,3}
120-cell t012 H3.png 60px 120-cell t012 B3.png Cantitruncated 120-cell.png Great rhombated hecatonicosachoron net.png
12 runcitruncated 120-cell
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,1,3{5,3,3}
120-cell t013 H3.png 60px 120-cell t013 B3.png Runcitruncated 120-cell.png Prismatorhombated hexacosichoron net.png
13 runcitruncated 600-cell
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1,3{3,3,5}
120-cell t023 H3.png 60px 120-cell t023 B3.png Runcitruncated 600-cell.png Prismatorhombated hecatonicosachoron net.png
14 cantitruncated 600-cell
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
tr{3,3,5}
120-cell t123 H3.png 60px 120-cell t123 B3.png Cantitruncated 600-cell.png Great rhombated hexacosichoron net.png
15 omnitruncated 120-cell
(also omnitruncated 600-cell)
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1,2,3{5,3,3}
120-cell t0123 H3.png 60px 120-cell t0123 B3.png Omnitruncated 120-cell wireframe.png Great disprismatohexacosihecatonicosachoron net.png
Diminished forms
# Name Coxeter plane projections Schlegel diagrams Net
F4
[12]
[20] H4
[30]
H3
[10]
A3
[4]
A2
[3]
Dodecahedron
centered
Tetrahedron
centered
16 20-diminished 600-cell
(grand antiprism)
Grand antiprism ortho-30-gon.png Grand antiprism H3.png Pentagonal double antiprismoid net.png
17 24-diminished 600-cell
(snub 24-cell)
24-cell h01 F4.svg 60px 24-cell h01 B3.svg Snub disicositetrachoron net.png
18
Nonuniform
Bi-24-diminished 600-cell Bidex ortho 12-gon.png Bidex ortho-30-gon.png Biicositetradiminished hexacosichoron net.png
19
Nonuniform
120-diminished rectified 600-cell Swirlprismatodiminished rectified hexacosichoron net.png

Coordinates

The coordinates of uniform polytopes from the H4 family are complicated. The regular ones can be expressed in terms of the golden ratio φ = (1 + 5)/2 and σ = (35 + 1)/2. Coxeter expressed them as 5-dimensional coordinates.[1]

n 120-cell 600-cell
4D

The 600 vertices of the 120-cell include all permutations of[2]

(0, 0, ±2, ±2)
(±1, ±1, ±1, ±5)
(±φ−2, ±φ, ±φ, ±φ)
(±φ−1, ±φ−1, ±φ−1, ±φ2)

and all even permutations of

(0, ±φ−2, ±1, ±φ2)
(0, ±φ−1, ±φ, ±5)
(±φ−1, ±1, ±φ, ±2)
The vertices of a 600-cell centered at the origin of 4-space, with edges of length 1/φ (where φ = (1+5)/2 is the golden ratio), can be given as follows: 16 vertices of the form[3]
(±½, ±½, ±½, ±½),

and 8 vertices obtained from

(0, 0, 0, ±1) by permuting coordinates.

The remaining 96 vertices are obtained by taking even permutations of

½ (±φ, ±1, ±1/φ, 0).
5D Zero-sum permutation:
(30): (5, 5, 0, −5, −5)
(10): ±(4, −1, −1, −1, −1)
(40): ±(φ−1, φ−1, φ−1, 2, −σ)
(40): ±(φ, φ, φ, −2, −(σ−1))
(120): ±(φ5, 0, 0, φ−15, −5)
(120): ±(2, 2, φ−15, −φ, −3)
(240): ±(φ2, 2φ−1, φ−2, −1, −2φ)
Zero-sum permutation:
(20): (5, 0, 0, 0, −5)
(40): ±(φ2, φ−2, −1, −1, −1)
(60): ±(2, φ−1, φ−1, −φ, −φ)

References

  • J.H. Conway and M.J.T. Guy: Four-Dimensional Archimedean Polytopes, Proceedings of the Colloquium on Convexity at Copenhagen, page 38 und 39, 1965
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN:978-1-56881-220-5 (Chapter 26)
  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN:978-0-471-01003-6 Wiley::Kaleidoscopes: Selected Writings of H.S.M. Coxeter
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
    • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
  • Denney, Tomme; Hooker, Da'Shay; Johnson, De'Janeke; Robinson, Tianna; Butler, Majid; Claiborne, Sandernishe (2020). "The geometry of H4 polytopes". Advances in Geometry 20 (3): 433–444. doi:10.1515/advgeom-2020-0005. 
  • Dechant, Pierre-Philippe (2021). "Clifford Spinors and Root System Induction: H4 and the Grand Antiprism". Advances in Applied Clifford Algebras (Springer Science and Business Media) 31 (3). doi:10.1007/s00006-021-01139-2. 

Notes

  1. Coxeter, Regular and Semi-Regular Polytopes II, Four-dimensional polytopes', p.296-298
  2. Weisstein, Eric W.. "120-cell". http://mathworld.wolfram.com/120-Cell.html. 
  3. Weisstein, Eric W.. "600-cell". http://mathworld.wolfram.com/600-Cell.html. 

External links

  • Klitzing, Richard. "4D uniform 4-polytopes". https://bendwavy.org/klitzing/dimensions/polychora.htm. 
  • Uniform, convex polytopes in four dimensions:, Marco Möller (in German)
    • Möller, Marco (2004). Vierdimensionale Archimedische Polytope (PDF) (Doctoral dissertation) (in Deutsch). University of Hamburg.
  • Uniform Polytopes in Four Dimensions, George Olshevsky.
  • H4 uniform polytopes with coordinates: {5,3,3}, {3,3,5}, r{5,3,3},r{3,3,5}, t{3,3,5}, t{5,3,3}, rr{3,3,5}, rr{5,3,3}, tr{3,3,5}, tr{5,3,3}, 2t{5,3,3}, t03{5,3,3}, t013{3,3,5}, t013{5,3,3}, t0123{5,3,3}, grand antiprism
Fundamental convex regular and uniform polytopes in dimensions 2–10
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform 4-polytope 5-cell 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds