Catalan solid

From HandWiki
Short description: 13 polyhedra; duals of the Archimedean solids
The solids above (dark) shown together with their duals (light). The visible parts of the Catalan solids are regular pyramids.
A rhombic dodecahedron with its face configuration.

In mathematics, a Catalan solid, or Archimedean dual, is a polyhedron that is dual to an Archimedean solid. There are 13 Catalan solids. They are named for the Belgian mathematician Eugène Catalan, who first described them in 1865.

The Catalan solids are all convex. They are face-transitive but not vertex-transitive. This is because the dual Archimedean solids are vertex-transitive and not face-transitive. Note that unlike Platonic solids and Archimedean solids, the faces of Catalan solids are not regular polygons. However, the vertex figures of Catalan solids are regular, and they have constant dihedral angles. Being face-transitive, Catalan solids are isohedra.

Additionally, two of the Catalan solids are edge-transitive: the rhombic dodecahedron and the rhombic triacontahedron. These are the duals of the two quasi-regular Archimedean solids.

Just as prisms and antiprisms are generally not considered Archimedean solids, bipyramids and trapezohedra are generally not considered Catalan solids, despite being face-transitive.

Two of the Catalan solids are chiral: the pentagonal icositetrahedron and the pentagonal hexecontahedron, dual to the chiral snub cube and snub dodecahedron. These each come in two enantiomorphs. Not counting the enantiomorphs, bipyramids, and trapezohedra, there are a total of 13 Catalan solids.

List of Catalan solids and their duals

Conway name Archimedean dual Face
polygon
Orthogonal
wireframes
Pictures Face angles (°) Dihedral angle (°) Midradius[1] Faces Edges Vert Sym.
triakis tetrahedron
"kT"
truncated tetrahedron Isosceles
DU02 facets.png
V3.6.6
Dual tetrahedron t01 ae.png60pxDual tetrahedron t01.png Triakis tetrahedronTriakis tetrahedron 112.885
33.557
33.557
129.521 1.0607 12 18 8 Td
rhombic dodecahedron
"jC"
cuboctahedron Rhombus
DU07 facets.png
V3.4.3.4
Dual cube t1 v.png 60pxDual cube t1 B2.png Rhombic dodecahedronRhombic dodecahedron 70.529
109.471
70.529
109.471
120 0.8660 12 24 14 Oh
triakis octahedron
"kO"
truncated cube Isosceles
DU09 facets.png
V3.8.8
Dual truncated cube t01 e88.png60pxDual truncated cube t01 B2.png Triakis octahedronTriakis octahedron 117.201
31.400
31.400
147.350 1.7071 24 36 14 Oh
tetrakis hexahedron
"kC"
truncated octahedron Isosceles
DU08 facets.png
V4.6.6
Dual cube t12 e66.png60pxDual cube t12 B2.png Tetrakis hexahedronTetrakis hexahedron 83.621
48.190
48.190
143.130 1.5000 24 36 14 Oh
deltoidal icositetrahedron
"oC"
rhombicuboctahedron Kite
DU10 facets.png
V3.4.4.4
Dual cube t02 f4b.png60pxDual cube t02 B2.png Deltoidal icositetrahedronDeltoidal icositetrahedron 81.579
81.579
81.579
115.263
138.118 1.3066 24 48 26 Oh
disdyakis dodecahedron
"mC"
truncated cuboctahedron Scalene
DU11 facets.png
V4.6.8
Dual cube t012 f4.png60pxDual cube t012 B2.png Disdyakis dodecahedronDisdyakis dodecahedron 87.202
55.025
37.773
155.082 2.2630 48 72 26 Oh
pentagonal icositetrahedron
"gC"
snub cube Pentagon
DU12 facets.png
V3.3.3.3.4
Dual snub cube e1.png60pxDual snub cube B2.png Pentagonal icositetrahedronPentagonal icositetrahedron (Ccw) 114.812
114.812
114.812
114.812
80.752
136.309 1.2472 24 60 38 O
rhombic triacontahedron
"jD"
icosidodecahedron Rhombus
DU24 facets.png
V3.5.3.5
Dual dodecahedron t1 e.png60pxDual dodecahedron t1 H3.png Rhombic triacontahedronRhombic triacontahedron 63.435
116.565
63.435
116.565
144 1.5388 30 60 32 Ih
triakis icosahedron
"kI"
truncated dodecahedron Isosceles
DU26 facets.png
V3.10.10
Dual dodecahedron t12 exx.png60pxDual dodecahedron t12 H3.png Triakis icosahedronTriakis icosahedron 119.039
30.480
30.480
160.613 2.9271 60 90 32 Ih
pentakis dodecahedron
"kD"
truncated icosahedron Isosceles
DU25 facets.png
V5.6.6
Dual dodecahedron t01 e66.png60pxDual dodecahedron t01 H3.png Pentakis dodecahedronPentakis dodecahedron 68.619
55.691
55.691
156.719 2.4271 60 90 32 Ih
deltoidal hexecontahedron
"oD"
rhombicosidodecahedron Kite
DU27 facets.png
V3.4.5.4
Dual dodecahedron t02 f4.png60pxDual dodecahedron t02 H3.png Deltoidal hexecontahedronDeltoidal hexecontahedron 86.974
67.783
86.974
118.269
154.121 2.1763 60 120 62 Ih
disdyakis triacontahedron
"mD"
truncated icosidodecahedron Scalene
DU28 facets.png
V4.6.10
Dual dodecahedron t012 f4.png60pxDual dodecahedron t012 H3.png Disdyakis triacontahedronDisdyakis triacontahedron 88.992
58.238
32.770
164.888 3.7694 120 180 62 Ih
pentagonal hexecontahedron
"gD"
snub dodecahedron Pentagon
DU29 facets.png
V3.3.3.3.5
Dual snub dodecahedron e1.png60pxDual snub dodecahedron H2.png Pentagonal hexecontahedronPentagonal hexecontahedron (Ccw) 118.137
118.137
118.137
118.137
67.454
153.179 2.0971 60 150 92 I

Symmetry

The Catalan solids, along with their dual Archimedean solids, can be grouped in those with tetrahedral, octahedral and icosahedral symmetry. For both octahedral and icosahedral symmetry there are six forms. The only Catalan solid with genuine tetrahedral symmetry is the triakis tetrahedron (dual of the truncated tetrahedron). The rhombic dodecahedron and tetrakis hexahedron have octahedral symmetry, but they can be colored to have only tetrahedral symmetry. Rectification and snub also exist with tetrahedral symmetry, but they are Platonic instead of Archimedean, so their duals are Platonic instead of Catalan. (They are shown with brown background in the table below.)

Tetrahedral symmetry
Archimedean
(Platonic)
Polyhedron 4-4.png Polyhedron truncated 4a max.png Polyhedron truncated 4b max.png Polyhedron small rhombi 4-4 max.png
Error creating thumbnail: File with dimensions greater than 12.5 MP
Polyhedron snub 4-4 left max.png
Catalan
(Platonic)
Polyhedron 4-4 dual blue.png Polyhedron truncated 4a dual max.png Polyhedron truncated 4b dual max.png Polyhedron small rhombi 4-4 dual max.png Polyhedron great rhombi 4-4 dual max.png Polyhedron snub 4-4 left dual max.png
Octahedral symmetry
Archimedean Polyhedron 6-8 max.png Polyhedron truncated 6 max.png Polyhedron truncated 8 max.png Polyhedron small rhombi 6-8 max.png Polyhedron great rhombi 6-8 max.png Polyhedron snub 6-8 left max.png
Catalan Polyhedron 6-8 dual max.png Polyhedron truncated 6 dual max.png Polyhedron truncated 8 dual max.png Polyhedron small rhombi 6-8 dual max.png Polyhedron great rhombi 6-8 dual max.png Polyhedron snub 6-8 left dual max.png
Icosahedral symmetry
Archimedean Polyhedron 12-20 max.png Polyhedron truncated 12 max.png Polyhedron truncated 20 max.png Polyhedron small rhombi 12-20 max.png Polyhedron great rhombi 12-20 max.png Polyhedron snub 12-20 left max.png
Catalan Polyhedron 12-20 dual max.png Polyhedron truncated 12 dual max.png Polyhedron truncated 20 dual max.png Polyhedron small rhombi 12-20 dual max.png Polyhedron great rhombi 12-20 dual max.png Polyhedron snub 12-20 left dual max.png

Geometry

All dihedral angles of a Catalan solid are equal. Denoting their value by [math]\displaystyle{ \theta }[/math] , and denoting the face angle at the vertices where [math]\displaystyle{ p }[/math] faces meet by [math]\displaystyle{ \alpha_p }[/math], we have

[math]\displaystyle{ \sin(\theta/2)=\cos(\pi/p)/\cos(\alpha_p/2) }[/math].

This can be used to compute [math]\displaystyle{ \theta }[/math] and [math]\displaystyle{ \alpha_p }[/math], [math]\displaystyle{ \alpha_q }[/math], ... , from [math]\displaystyle{ p }[/math], [math]\displaystyle{ q }[/math] ... only.

Triangular faces

Of the 13 Catalan solids, 7 have triangular faces. These are of the form Vp.q.r, where p, q and r take their values among 3, 4, 5, 6, 8 and 10. The angles [math]\displaystyle{ \alpha_p }[/math], [math]\displaystyle{ \alpha_q }[/math] and [math]\displaystyle{ \alpha_r }[/math] can be computed in the following way. Put [math]\displaystyle{ a = 4\cos^2(\pi/p) }[/math], [math]\displaystyle{ b = 4\cos^2(\pi/q) }[/math], [math]\displaystyle{ c = 4\cos^2(\pi/r) }[/math] and put

[math]\displaystyle{ S = -a^2-b^2-c^2+2 a b + 2 b c + 2 c a }[/math].

Then

[math]\displaystyle{ \cos(\alpha_p) = \frac{S}{2 b c} - 1 }[/math],
[math]\displaystyle{ \sin(\alpha_p/2) = \frac{-a+b+c}{2\sqrt{b c}} }[/math].

For [math]\displaystyle{ \alpha_q }[/math] and [math]\displaystyle{ \alpha_r }[/math] the expressions are similar of course. The dihedral angle [math]\displaystyle{ \theta }[/math] can be computed from

[math]\displaystyle{ \cos(\theta)=1- 2 a b c/S }[/math].

Applying this, for example, to the disdyakis triacontahedron ([math]\displaystyle{ p=4 }[/math], [math]\displaystyle{ q=6 }[/math] and [math]\displaystyle{ r=10 }[/math], hence [math]\displaystyle{ a = 2 }[/math], [math]\displaystyle{ b = 3 }[/math] and [math]\displaystyle{ c = \phi + 2 }[/math], where [math]\displaystyle{ \phi }[/math] is the golden ratio) gives [math]\displaystyle{ \cos(\alpha_4)=\frac{2-\phi}{6(2+\phi)}= \frac{7-4\phi}{30} }[/math] and [math]\displaystyle{ \cos(\theta) = \frac{-10-7\phi}{14+5\phi}=\frac{-48\phi-155}{241} }[/math].

Quadrilateral faces

Of the 13 Catalan solids, 4 have quadrilateral faces. These are of the form Vp.q.p.r, where p, q and r take their values among 3, 4, and 5. The angle [math]\displaystyle{ \alpha_p }[/math]can be computed by the following formula:

[math]\displaystyle{ \cos(\alpha_p)= \frac{2\cos^2(\pi/p)-\cos^2(\pi/q)-\cos^2(\pi/r)}{2\cos^2(\pi/p)+2\cos(\pi/q)\cos(\pi/r)} }[/math].

From this, [math]\displaystyle{ \alpha_q }[/math], [math]\displaystyle{ \alpha_r }[/math] and the dihedral angle can be easily computed. Alternatively, put [math]\displaystyle{ a = 4\cos^2(\pi/p) }[/math], [math]\displaystyle{ b = 4\cos^2(\pi/q) }[/math], [math]\displaystyle{ c = 4\cos^2(\pi/p)+4\cos(\pi/q)\cos(\pi/r) }[/math]. Then [math]\displaystyle{ \alpha_p }[/math] and [math]\displaystyle{ \alpha_q }[/math] can be found by applying the formulas for the triangular case. The angle [math]\displaystyle{ \alpha_r }[/math] can be computed similarly of course. The faces are kites, or, if [math]\displaystyle{ q=r }[/math], rhombi. Applying this, for example, to the deltoidal icositetrahedron ([math]\displaystyle{ p=4 }[/math], [math]\displaystyle{ q=3 }[/math] and [math]\displaystyle{ r=4 }[/math]), we get [math]\displaystyle{ \cos(\alpha_4)=\frac{1}{2}-\frac{1}{4}\sqrt{2} }[/math].

Pentagonal faces

Of the 13 Catalan solids, 2 have pentagonal faces. These are of the form Vp.p.p.p.q, where p=3, and q=4 or 5. The angle [math]\displaystyle{ \alpha_p }[/math]can be computed by solving a degree three equation:

[math]\displaystyle{ 8\cos^2(\pi/p)\cos^3(\alpha_p)-8\cos^2(\pi/p)\cos^2(\alpha_p)+\cos^2(\pi/q)=0 }[/math].

Metric properties

For a Catalan solid [math]\displaystyle{ \bf C }[/math] let [math]\displaystyle{ \bf A }[/math] be the dual with respect to the midsphere of [math]\displaystyle{ \bf C }[/math]. Then [math]\displaystyle{ \bf A }[/math] is an Archimedean solid with the same midsphere. Denote the length of the edges of [math]\displaystyle{ \bf A }[/math] by [math]\displaystyle{ l }[/math]. Let [math]\displaystyle{ r }[/math] be the inradius of the faces of [math]\displaystyle{ \bf C }[/math], [math]\displaystyle{ r_m }[/math] the midradius of [math]\displaystyle{ \bf C }[/math] and [math]\displaystyle{ \bf A }[/math], [math]\displaystyle{ r_i }[/math] the inradius of [math]\displaystyle{ \bf C }[/math], and [math]\displaystyle{ r_c }[/math] the circumradius of [math]\displaystyle{ \bf A }[/math]. Then these quantities can be expressed in [math]\displaystyle{ l }[/math] and the dihedral angle [math]\displaystyle{ \theta }[/math] as follows:

[math]\displaystyle{ r^2=\frac{l^2}{8}(1-\cos\theta) }[/math],
[math]\displaystyle{ r_m^2=\frac{l^2}{4}\frac{1-\cos\theta}{1+\cos\theta} }[/math],
[math]\displaystyle{ r_i^2=\frac{l^2}{8}\frac{(1-\cos\theta)^2}{1+\cos\theta} }[/math],
[math]\displaystyle{ r_c^2=\frac{l^2}{2}\frac{1}{1+\cos\theta} }[/math].

These quantities are related by [math]\displaystyle{ r_m^2=r_i^2+r^2 }[/math], [math]\displaystyle{ r_c^2=r_m^2+l^2/4 }[/math] and [math]\displaystyle{ r_i r_c=r_m^2 }[/math].

As an example, let [math]\displaystyle{ \bf A }[/math] be a cuboctahedron with edge length [math]\displaystyle{ l=1 }[/math]. Then [math]\displaystyle{ \bf C }[/math] is a rhombic dodecahedron. Applying the formula for quadrilateral faces with [math]\displaystyle{ p=4 }[/math] and [math]\displaystyle{ q=r=3 }[/math] gives [math]\displaystyle{ \cos \theta=-1/2 }[/math], hence [math]\displaystyle{ r_i=3/4 }[/math], [math]\displaystyle{ r_m=\frac{1}{2}\sqrt{3} }[/math], [math]\displaystyle{ r_c=1 }[/math], [math]\displaystyle{ r=\frac{1}{4}\sqrt{3} }[/math].

All vertices of [math]\displaystyle{ \bf C }[/math] of type [math]\displaystyle{ p }[/math] lie on a sphere with radius [math]\displaystyle{ r_{c,p} }[/math] given by

[math]\displaystyle{ r_{c,p}^2=r_i^2+\frac{2r^2}{1-\cos\alpha_p} }[/math],

and similarly for [math]\displaystyle{ q,r,\ldots }[/math].

Dually, there is a sphere which touches all faces of [math]\displaystyle{ \bf A }[/math] which are regular [math]\displaystyle{ p }[/math]-gons (and similarly for [math]\displaystyle{ q,r,\ldots }[/math]) in their center. The radius [math]\displaystyle{ r_{i,p} }[/math] of this sphere is given by

[math]\displaystyle{ r_{i,p}^2=r_m^2-\frac{l^2}{4}\cot^2(\pi/p) }[/math].

These two radii are related by [math]\displaystyle{ r_{i,p}r_{c,p}=r_m^2 }[/math]. Continuing the above example: [math]\displaystyle{ \cos\alpha_3=-1/3 }[/math] and [math]\displaystyle{ \cos\alpha_4=1/3 }[/math], which gives [math]\displaystyle{ r_{c,3}=\frac{3}{8}\sqrt{6} }[/math], [math]\displaystyle{ r_{c,4}=\frac{3}{4}\sqrt{2} }[/math], [math]\displaystyle{ r_{i,3}=\frac{1}{3}\sqrt{6} }[/math] and [math]\displaystyle{ r_{i,4}=\frac{1}{2}\sqrt{2} }[/math].

If [math]\displaystyle{ P }[/math] is a vertex of [math]\displaystyle{ \bf C }[/math] of type [math]\displaystyle{ p }[/math], [math]\displaystyle{ e }[/math] an edge of [math]\displaystyle{ \bf C }[/math] starting at [math]\displaystyle{ P }[/math], and [math]\displaystyle{ P^\prime }[/math] the point where the edge [math]\displaystyle{ e }[/math] touches the midsphere of [math]\displaystyle{ \bf C }[/math], denote the distance [math]\displaystyle{ P P^\prime }[/math] by [math]\displaystyle{ l_p }[/math]. Then the edges of [math]\displaystyle{ \bf C }[/math] joining vertices of type [math]\displaystyle{ p }[/math] and type [math]\displaystyle{ q }[/math] have length [math]\displaystyle{ l_{p, q} = l_p + l_q }[/math]. These quantities can be computed by

[math]\displaystyle{ l_p=\frac{l}{2}\frac{\cos(\pi/p)}{\sin(\alpha_p/2)} }[/math],

and similarly for [math]\displaystyle{ q, r, \ldots }[/math]. Continuing the above example: [math]\displaystyle{ \sin(\alpha_3/2)=\frac{1}{3}\sqrt{6} }[/math], [math]\displaystyle{ \sin(\alpha_4/2)=\frac{1}{3}\sqrt{3} }[/math], [math]\displaystyle{ l_3=\frac{1}{8}\sqrt{6} }[/math], [math]\displaystyle{ l_4=\frac{1}{4}\sqrt{6} }[/math], so the edges of the rhombic dodecahedron have length [math]\displaystyle{ l_{3,4}=\frac{3}{8}\sqrt{6} }[/math].

The dihedral angles [math]\displaystyle{ \alpha_{p, q} }[/math]between [math]\displaystyle{ p }[/math]-gonal and [math]\displaystyle{ q }[/math]-gonal faces of [math]\displaystyle{ \bf A }[/math] satisfy

[math]\displaystyle{ \cos \alpha_{p,q} = \frac{l^2}{4}\frac{\cot(\pi/p)\cot(\pi/q)}{r_m^2}-\frac{r_{i, p}r_{i, q}}{r_m^2} = \frac{l_p l_q-r_m^2}{r_{c,p}r_{c,q}} }[/math].

Finishing the rhombic dodecahedron example, the dihedral angle [math]\displaystyle{ \alpha_{3,4} }[/math] of the cuboctahedron is given by [math]\displaystyle{ \cos \alpha_{3,4}=-\frac{1}{3}\sqrt{3} }[/math].

Construction

The face of any Catalan polyhedron may be obtained from the vertex figure of the dual Archimedean solid using the Dorman Luke construction.[2]

Application to other solids

All of the formulae of this section apply to the Platonic solids, and bipyramids and trapezohedra with equal dihedral angles as well, because they can be derived from the constant dihedral angle property only. For the pentagonal trapezohedron, for example, with faces V3.3.5.3, we get [math]\displaystyle{ \cos(\alpha_3)=\frac{1}{4}-\frac{1}{4}\sqrt{5} }[/math], or [math]\displaystyle{ \alpha_3=108^{\circ} }[/math]. This is not surprising: it is possible to cut off both apexes in such a way as to obtain a regular dodecahedron.

See also

Notes

  1. Weisstein, Eric W.. "Archimedean Solid" (in en). https://mathworld.wolfram.com/. 
  2. (Cundy Rollett), p.  117; (Wenninger 1983), p. 30.

References

  • Eugène Catalan Mémoire sur la Théorie des Polyèdres. J. l'École Polytechnique (Paris) 41, 1-71, 1865.
  • Mathematical Models (2nd ed.), Oxford: Clarendon Press, 1961 .
  • Gailiunas, P.; Sharp, J. (2005), "Duality of polyhedra", International Journal of Mathematical Education in Science and Technology 36 (6): 617–642, doi:10.1080/00207390500064049 .
  • Alan Holden Shapes, Space, and Symmetry. New York: Dover, 1991.
  • Wenninger, Magnus (1983), Dual Models, Cambridge University Press, ISBN 978-0-521-54325-5  (The thirteen semiregular convex polyhedra and their duals)
  • Williams, Robert (1979). The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publications, Inc. ISBN 0-486-23729-X.  (Section 3-9)
  • Anthony Pugh (1976). Polyhedra: A visual approach. California: University of California Press Berkeley. ISBN 0-520-03056-7.  Chapter 4: Duals of the Archimedean polyhedra, prisma and antiprisms

External links