Biology:Human endogenous retrovirus K

From HandWiki
Short description: Species of virus


Human endogenous retrovirus K
Virus classification e
(unranked): Virus
Realm: Riboviria
Kingdom: Pararnavirae
Phylum: Artverviricota
Class: Revtraviricetes
Order: Ortervirales
Family: Retroviridae
Genus: Betaretrovirus (?)
(unranked): Human endogenous retrovirus K

Human endogenous retrovirus K (HERV-K) or Human teratocarcinoma-derived virus (HDTV) is a family of human endogenous retroviruses associated with malignant tumors of the testes.[1][2][3][4] Phylogenetically, the HERV-K group belongs to the ERV2 or Class II or Betaretrovirus-like supergroup.[5] Over the past several years, it has been found that this group of ERVs play an important role in embryogenesis, but their expression is silenced in most cell types in healthy adults.[6] The HERV-K family, and particularly its subgroup HML-2, is the youngest and most transcriptionally active group and hence, it is the best studied among other ERVs. Reactivation of it or anomalous expression of HML-2 in adult tissues has been associated with various types of cancer [7][8][9] and with neurodegenerative diseases such as amytrophic lateral sclerosis (ALS).[10][5] Endogenous retrovirus K (HERV-K) is related to mammary tumor virus in mice. It exists in the human and cercopithecoid genomes. Human genome contains hundreds of copies of HERV-K and many of them possess complete open reading frames (ORFs) that are transcribed and translated, especially in early embryogenesis and in malignancies.[5][11] One notable[12][13][14][15] location of HERV-K is the C4 gene of RCCX module.[16][17] HERV-K is also found in apes and Old World monkeys. It is uncertain how long ago in primate evolution the full-length HERV-K proviruses which are in the human genome today were created.[18]

The human endogenous retrovirus K (HERV-K) was inherited million years ago by the genome of the human ancestors.[18] In 1999 Barbulescu, et al. showed that, of ten HERV-K proviruses cloned, eight were unique to humans, while one was shared with chimpanzees and bonobos, and one with chimpanzees, bonobos and gorillas.[19] Originally, HERV-K was observed by low-stringency hybridization with probes for the mammary tumor virus of the mouse and A particle intracutaneous mouse.[18]

In 2015 Grow et al. demonstrated that HERV-K is transcribed during embryogenesis from the eight cell stage up to the stem cell derivation.[20] Furthermore, overexpression of the HERV-K accessory protein Rec (regulator of expression encoded by corf; Pfam PF15695) increases IFITM1 levels on the cell surface and inhibits viral infection.[20][21] HERV-K is called, phylogenetically, a supergroup of viruses. It is the only group that reported to contain human-specific members of endogenous retroviruses (ERVs).[22]

HERV-K is receptive to microenvironmental modifications and melanoma cells are closely correlated with epigenetic and microenvironmental anomalies. Also the association of HERV-K activation with carcinogenesis is especially interesting.[23]

See also

References

  1. Boeke JD, Stoye JP (1997). "Retrotransposons, endogenous retroviruses, and the evolution of retroelements". Retroviruses. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press. pp. 343–435. 
  2. Boller, Klaus; König, Herbert; Sauter, Marlies; Mueller-Lantzsch, Nikolaus; Löwer, Roswitha; Löwer, Johannes; Kurth, Reinhard (September 1993). "Evidence That HERV-K Is the Endogenous Retrovirus Sequence That Codes for the Human Teratocarcinoma-Derived Retrovirus HTDV". Virology 196 (1): 349–353. doi:10.1006/viro.1993.1487. PMID 8356806. 
  3. Löwer, J; Wondrak, EM; Kurth, R (November 1987). "Genome analysis and reverse transcriptase activity of human teratocarcinoma-derived retroviruses.". The Journal of General Virology 68 (11): 2807–15. doi:10.1099/0022-1317-68-11-2807. PMID 2445905. 
  4. Rédei, George P. (2008). Encyclopedia of genetics, genomics, proteomics, and informatics (3rd ed.). Springer. ISBN 978-1-4020-6754-9. 
  5. 5.0 5.1 5.2 Garcia-Montojo, Marta; Doucet-O'Hare, Tara; Henderson, Lisa; Nath, Avindra (14 October 2018). "Human endogenous retrovirus-K (HML-2): a comprehensive review". Critical Reviews in Microbiology 44 (6): 715–738. doi:10.1080/1040841X.2018.1501345. PMID 30318978. 
  6. Grow, Edward J.; Flynn, Ryan A.; Chavez, Shawn L.; Bayless, Nicholas L.; Wossidlo, Mark; Wesche, Daniel J.; Martin, Lance; Ware, Carol B. et al. (20 April 2015). "Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells". Nature 522 (7555): 221–225. doi:10.1038/nature14308. PMID 25896322. Bibcode2015Natur.522..221G. 
  7. Argaw-Denboba, Ayele; Balestrieri, Emanuela; Serafino, Annalucia; Cipriani, Chiara; Bucci, Ilaria; Sorrentino, Roberta; Sciamanna, Ilaria; Gambacurta, Alessandra et al. (26 January 2017). "HERV-K activation is strictly required to sustain CD133+ melanoma cells with stemness features". Journal of Experimental & Clinical Cancer Research 36 (1): 20. doi:10.1186/s13046-016-0485-x. PMID 28125999. 
  8. Cegolon, Luca; Salata, Cristiano; Weiderpass, Elisabete; Vineis, Paolo; Palù, Giorgio; Mastrangelo, Giuseppe (3 January 2013). "Human endogenous retroviruses and cancer prevention: evidence and prospects". BMC Cancer 13 (1): 4. doi:10.1186/1471-2407-13-4. PMID 23282240. 
  9. Agoni, Lorenzo; Lenz, Jack; Guha, Chandan; Belshaw, Robert (18 October 2013). "Variant Splicing and Influence of Ionizing Radiation on Human Endogenous Retrovirus K (HERV-K) Transcripts in Cancer Cell Lines". PLOS ONE 8 (10): e76472. doi:10.1371/journal.pone.0076472. PMID 24204631. Bibcode2013PLoSO...876472A. 
  10. Li, Wenxue; Lee, Myoung-Hwa; Henderson, Lisa; Tyagi, Richa; Bachani, Muzna; Steiner, Joseph; Campanac, Emilie; Hoffman, Dax A. et al. (30 September 2015). "Human endogenous retrovirus-K contributes to motor neuron disease". Science Translational Medicine 7 (307): 307ra153. doi:10.1126/scitranslmed.aac8201. PMID 26424568. 
  11. Wildschutte, Julia Halo; Williams, Zachary H.; Montesion, Meagan; Subramanian, Ravi P.; Kidd, Jeffrey M.; Coffin, John M. (19 April 2016). "Discovery of unfixed endogenous retrovirus insertions in diverse human populations". Proceedings of the National Academy of Sciences 113 (16): E2326–E2334. doi:10.1073/pnas.1602336113. PMID 27001843. Bibcode2016PNAS..113E2326W. 
  12. "Complement C4 associations with altered microbial biomarkers exemplify gene-by-environment interactions in schizophrenia". Schizophr Res 234: 87–93. August 2021. doi:10.1016/j.schres.2021.02.001. PMID 33632634. 
  13. "Insights on the relationship between complement component C4 serum concentrations and C4 gene copy numbers in a Western Australian systemic lupus erythematosus cohort". Lupus 27 (10): 1687–1696. September 2018. doi:10.1177/0961203318787039. PMID 30041577. 
  14. "Comprehensive approach to study complement C4 in systemic lupus erythematosus: Gene polymorphisms, protein levels and functional activity". Mol Immunol 92: 125–131. December 2017. doi:10.1016/j.molimm.2017.10.004. PMID 29080553. 
  15. "Low HERV-K(C4) copy number is associated with type 1 diabetes". Diabetes 63 (5): 1789–95. May 2014. doi:10.2337/db13-1382. PMID 24430436. 
  16. "The dichotomous size variation of human complement C4 genes is mediated by a novel family of endogenous retroviruses, which also establishes species-specific genomic patterns among Old World primates". Immunogenetics 40 (6): 425–36. 1994. doi:10.1007/BF00177825. PMID 7545960. 
  17. "Complement component C4 structural variation and quantitative traits contribute to sex-biased vulnerability in systemic sclerosis". npj Genom Med 7 (1): 57. October 2022. doi:10.1038/s41525-022-00327-8. PMID 36198672. 
  18. 18.0 18.1 18.2 M. Barbulescu, G. Turner, M. I. Seaman, A. S. Deinard, K. K. Kidd, ve J. Lenz, "Many human endogenous retrovirus K (HERV-K) proviruses are unique to humans", Curr. Biol., c. 9, sy 16, ss. 861-S1, Ağu. 1999, doi: 10.1016/S0960-9822(99)80390-X.
  19. Madalina Barbulescu; Geoffrey Turner; Michael I. Seaman†; Amos S. Deinard‡§; Kenneth K. Kidd; Jack Lenz (1999). "Many human endogenous retrovirus K (HERV-K) proviruses are unique to humans". Current Biology 9 (16): 861–8. doi:10.1016/s0960-9822(99)80390-x. PMID 10469592. 
  20. 20.0 20.1 Edward J. Grow; Ryan A. Flynn; Shawn L. Chavez; Nicholas L. Bayless; Mark Wossidlo; Daniel J. Wesche; Lance Martin; Carol B. Ware et al. (11 June 2015). "Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells". Nature 522 (7555): 221–5. doi:10.1038/nature14308. PMID 25896322. Bibcode2015Natur.522..221G. 
  21. "HERV-K(HML-2), a seemingly silent subtenant – but still waters run deep". APMIS 124 (1–2): 67–87. January–February 2016. doi:10.1111/apm.12475. PMID 26818263. 
  22. M. Garcia-Montojo, T. Doucet-O'Hare, L. Henderson, ve A. Nath, "Human endogenous retrovirus-K (HML-2): a comprehensive review", Crit. Rev. Microbiol., c. 44, sy 6, ss. 715-738, Kas. 2018, doi: 10.1080/1040841X.2018.1501345.
  23. E. Balestrieri vd., "Human Endogenous Retrovirus K in the Crosstalk Between Cancer Cells Microenvironment and Plasticity: A New Perspective for Combination Therapy", Front. Microbiol., c. 9, 2018, doi:10.3389/fmicb.2018.01448.

Further reading


Wikidata ☰ Q24975494 entry