Biology:2019 in paleobotany

From HandWiki

This article records new taxa of fossil plants that are scheduled to be described during the year 2019, as well as other significant discoveries and events related to paleobotany that are scheduled to occur in the year 2019.

Mosses

Name Novelty Status Authors Age Type locality Location Notes Images

Heinrichsiella[1]

Gen. et sp. nov

Valid

Bippus et al.

Jurassic

 Argentina

A moss, possibly related to the family Polytrichaceae or Timmiellaceae. Genus includes new species H. patagonica.

Kulindobryum[2]

Gen. et sp. nov

Valid

Ignatov in Mamontov & Ignatov

Middle or Late Jurassic

Ukureyskaya Formation

 Russia
(Template:Country data Zabaykalsky Krai)

A form genus of dispersed moss capsules. Genus includes new species K. taylorioides.

Polycingulatisporites multiverrucata[3]

Sp. nov

In press

Santamarina in Santamarina et al.

Late Cretaceous (Cenomanian)

Mata Amarilla Formation

 Argentina

Spores of a member of Bryophyta of uncertain phylogenetic placement, possibly of sphagnaceous affinity. Announced in 2019; the final version was scheduled to be published in 2020.

Sphagnum heinrichsii[4]

Sp. nov

Valid

Ignatov et al.

Late Eocene

Rovno amber

 Ukraine

A moss, a species of Sphagnum.

Paleaethallus[2]

Gen. et sp. nov

Valid

Mamontov, Katagiri & Borovich in Mamontov & Ignatov

Late Jurassic

Glushkovo Formation

 Russia
(Template:Country data Zabaykalsky Krai)

A thalloid bryophyte. Genus includes new species P. squarrosus.

Liverworts

Name Novelty Status Authors Age Type locality Location Notes Images

Khasurtythallus[2]

Gen. et sp. nov

Valid

Mamontov in Mamontov & Ignatov

Early Cretaceous

 Russia
( Buryatia)

A Marchantiidae liverwort.
The type species is K. monosolenioides.

Ricciopsis sandaolingensis[5]

Sp. nov

Valid

Li & Sun in Li et al.

Middle Jurassic

Xishanyao Formation

 China

A Ricciaceae liverwort.

Thallites yangcaogouensis[6]

Sp. nov

Valid

Wang et al.

Late Triassic

Yangcaogou Formation

 China

A plant of uncertain phylogenetic placement, probably a liverwort.

Ferns and fern allies

Name Novelty Status Authors Age Type locality Location Notes Images

Alloiopteris loecsei[7]

Sp. nov

Valid

Pšenička et al.

Carboniferous (Moscovian)

 Germany

A zygopterid fern.

Annularia noronhai[8]

Sp. nov

Valid

Correia et al.

Carboniferous (Gzhelian)

Douro Basin

 Portugal

A member of the family Calamitaceae. Announced in 2019; the final version of the article naming it was published in 2021.

Azolla keuja[9]

Sp. nov

Valid

Jud, De Benedetti, Gandolfo & Hermsen

Paleocene (Danian)

Salamanca Formation

 Argentina

A species of Azolla.

Berendtiopteris[10]

Gen. et comb. nov

Valid

Sadowski et al.

Eocene

Baltic amber

Europe (Baltic Sea region)

A plant of uncertain phylogenetic placement, probably a fern; a new genus for "Pecopteris" humboldtiana.

Bifariusotheca[11]

Gen. et sp. nov

Valid

X.H.Zhao ex Doweld

Late Permian

Longtan Formation

 China

A marattialean fern. Genus includes new species B. notocathaysica Doweld.

Bowmanites yongchangensis[12]

Sp. nov

Valid

Sun et al.

Permian (Cisuralian)

 China

A member of Sphenophyllales.

Clavatisporites cenomaniana[3]

Sp. nov

In press

Santamarina in Santamarina et al.

Late Cretaceous (Cenomanian)

Mata Amarilla Formation

 Argentina

Spores of a member of Filicopsida of uncertain phylogenetic placement. Announced in 2019; the final version of the article naming it is scheduled to be published in 2020.

Collarisporites minor[3]

Sp. nov

In press

Santamarina in Santamarina et al.

Late Cretaceous (Cenomanian)

Mata Amarilla Formation

 Argentina

Spores of a member of Filicopsida of uncertain phylogenetic placement. Announced in 2019; the final version of the article naming it is scheduled to be published in 2020.

Cyathocarpus yongchangensis[13]

Sp. nov

Valid

Sun & Sun in Sun et al.

Permian (Cisuralian)

Shanxi Formation

 China

A fern related to Psaronius.

Floratheca[14]

Gen. et sp. nov

Valid

Lundgren et al.

Early Permian

Río Genoa Formation

 Argentina

A member of Marattiales. Genus includes new species F. apokalyptika.

Germera brousmicheae[15]

Sp. nov

Valid

Álvarez-Vázquez

Carboniferous (Westphalian)

 Canada

A member of Filicopsida.

Hausmannia olaensis[16]

Sp. nov

Valid

Golovneva & Grabovskiy

Late Cretaceous (Santonian–early Campanian)

 Russia

A Dipteridaceae umbrella fern.

Heinrichsia[17]

Gen. et sp. nov

Valid

Regalado et al.

Cretaceous

Burmese amber

 Myanmar

A fern belonging to the family Pteridaceae. Genus includes new species H. cheilanthoides.

Kamatheca[11]

Gen. et comb. nov

Valid

Doweld

Permian

 Russia

A marattialean fern; a new genus for "Acitheca" gigantea Esaulova.

Marsilea sprungerorum[18]

Sp. nov

Valid

Hermsen

Eocene

Green River Formation

 United States
( Colorado
 Utah)

A Marsilea species water fern.

Neolobatannularia[19]

Gen. et sp. nov

Valid

Sun & Li in Wang et al.

Late Triassic

Yangcaogou Formation

 China

A member of Equisetales. Genus includes new species N. liaoningensis.

Osmundastrum gvozdevae[20]

Sp. nov

Valid

Bazhenova & Bazhenov

Middle Jurassic (Bathonian)

 Russia
(Template:Country data Kursk Oblast)

A species of Osmundastrum.

Palaeosorum waipiata[21]

Sp. nov

Valid

Kaulfuss et al.

Early Miocene

 New Zealand

A member of the family Polypodiaceae.

Phlebopteris kirchneri[22]

Sp. nov

Valid

Barbacka & Kustatscher in Barbacka, Kustatscher & Bodor

Early Jurassic (Hettangian)

Mecsek Coal Formation

 Hungary

A fern belonging to the family Matoniaceae.

Plenasium xiei[23]

Sp. nov

Valid

Cheng et al.

Cretaceous

 China

A member of Osmundaceae. Announced in 2019; the final version of the article naming it was published in 2021.

Polymorphopteris magdalenae[11]

Sp. nov

Valid

R.H.Wagner ex Doweld

Late Carboniferous

 Spain

A marattialean fern.

Polymorphopteris wagneri[11]

Sp. nov

Valid

Doweld

Late Carboniferous (Kasimovian)

 Spain

A marattialean fern.

Polypodiisporites serratus[24]

Sp. nov

Valid

D'Apolito et al.

Pliocene–Pleistocene

 Brazil

Fossil spore of a member of the family Polypodiaceae.

Polypodiisporites timidus[24]

Sp. nov

Valid

D'Apolito et al.

Pliocene–Pleistocene

 Brazil

Fossil spore of a member of the family Polypodiaceae.

Rinistachya[25]

Gen. et sp. nov

Valid

Prestianni & Gess

Devonian (Famennian)

Witpoort Formation

 South Africa

A member of Sphenophyllales.
The type species is R. hilleri.

Rothwellopteris[26]

Gen. et sp. nov

Valid

He et al.

Late Permian

Xuanwei Formation

 China

A fern belonging to the group Marattiales. Genus includes new species R. pecopteroides.

Scolecopteris libera[27]

Sp. nov

Valid

Li et al.

Permian (Asselian)

Taiyuan Formation

 China

A marattialean fern

Scolecopteris renaultii[11]

Sp. nov

Valid

Doweld

Permian (Cisuralian)

 France

A marattialean fern.

Tiania resinus[28]

Sp. nov

Valid

He & Wang

Permian (Lopingian)

Xuanwei Formation

 China

A member of Osmundales belonging to the extinct family Guaireaceae.

Lycophytes

Name Novelty Status Authors Age Type locality Location Notes Images

Bergeria wenquanensis[29]

Sp. nov

Valid

Feng, D’Rozario & Zhang

Carboniferous (Viséan)

Akeshake Formation

 China

A member of Lepidodendrales belonging to the family Flemingitaceae.

Guangdedendron[30]

Gen. et sp. nov

Wang et al.

Devonian (Famennian)

Wutong Formation

 China

A member of Isoetales belonging to the group Dichostrobiles. Genus includes new species G. micrum.

Omphalophloios wagneri[31]

Sp. nov

Valid

Opluštil, Pšenička & Bek

Carboniferous (Moscovian)

Illinois Basin

 United States
( Indiana)

Sawdonia hippotheca[32]

Sp. nov

Valid

Berry & Gensel

Devonian (probably late Givetian)

Campo Chico Formation

 Venezuela

A member of Zosterophyllopsida.

Conifers

Araucariaceae

Name Novelty Status Authors Age Type locality Location Notes Images

Agathoxylon gilii[33]

Sp. nov

Valid

Ríos-Santos & Cevallos-Ferriz

Late Jurassic

Todos Santos Formation

 Mexico

Agathoxylon hoodii[34]

Comb nov

valid

(Tidwell & Medlyn) Gee et al

Late Jurassic

Morrison Formation

 USA
 Utah

An araucariaceous petrified wood.
Moved from Araucarioxylon hoodii (1993)[35]

Agathoxylon jericonse[33]

Sp. nov

Valid

Ríos-Santos & Cevallos-Ferriz

Late Jurassic

Todos Santos Formation

 Mexico

Agathoxylon kotaense[36]

Sp. nov

In press

Chinnappa, Rajanikanth & Pauline Sabina

?Late Jurassic – Early Cretaceous

Kota Formation

 India

A member of the family Araucariaceae.

Agathoxylon parrensis[33]

Sp. nov

Valid

Ríos-Santos & Cevallos-Ferriz

Paleocene

Las Encinas Formation

 Mexico

Araucaria balfourensis[37]

Sp. nov

Valid

Hill et al.

Cenozoic

 Australia

A species of Araucaria.

Araucaria macrophylla[37]

Sp. nov

Valid

Hill et al.

Cenozoic

 Australia

A species of Araucaria.

Araucaria mollifolia[37]

Sp. nov

Valid

Hill et al.

Cenozoic

 Australia

A species of Araucaria.

Araucaria rothwellii[38]

Sp. nov

Valid

Kvaček in Kvaček et al.

Late Cretaceous (Campanian-Maastrichtian)

Bozova Formation

 Turkey

A species of Araucaria.

Brachyphyllum garciarum[39]

Sp. nov

Valid

Carrizo et al.

Early Cretaceous (early Hauterivian/early Barremian)

Springhill Formation

 Argentina

Probably a member of the family Araucariaceae.

Cupressaceae

Name Novelty Status Authors Age Type locality Location Notes Images

Austrocupressinoxylon[40]

Gen. et sp. nov

Valid

Nunes et al.

Early Cretaceous

 Argentina

A member of Cupressaceae. Genus includes new species A. barcinense.

Austrohamia asfaltensis[41]

Sp. nov

Valid

Contreras et al.

Early Jurassic

Cañadón Asfalto Formation

 Argentina

A member of the family Cupressaceae.

Callitris blackburnii[42]

Sp. nov

Valid

Paull et al.

Middle Miocene

 Australia

A species of Callitris.

Cupressinoxylon pliocenica[43]

Sp. nov

Valid

Akkemik

Pliocene

Örencik Formation

 Turkey

A member of the family Cupressaceae described on the basis of fossil wood.

Mesocyparis sinica[44]

Sp. nov

Valid

Cui et al.

Paleocene (Danian)

Wuyun Formation

 China

A member of the family Cupressaceae.

Protaxodioxylon sahnii[45]

Sp. nov

Valid

Chinnappa, Kavali & Rajanikanth

Late Jurassic to Early Cretaceous

Kota Formation

 India

A member of Cupressaceae, possibly related to Taxodium.

Protodammara reimatamoriori[46]

Sp. nov

Valid

Mays & Cantrill

Late Cretaceous (Cenomanian)

Tupuangi Formation

 New Zealand

A member of Cupressaceae.

Taxodioxylon cabullensis[33]

Sp. nov

Valid

Ríos-Santos & Cevallos-Ferriz

Late Cretaceous

Packard Formation

 Mexico

A cupressaceous fossil wood.

Taxodium viligense[47]

Sp. nov

Valid

Golovneva

Late Cretaceous (Coniacian)

Chingandzha Formation

 Russia

A species of Taxodium.

Pinceae

Name Novelty Status Authors Age Type locality Location Notes Images

Abies cuitlahuacii[48]

Sp. nov

Valid

Cevallos-Ferriz, Ríos-Santos & Lozano-García

Pleistocene

 Mexico

A fir.

Pinus plioarmandii[49]

Sp. nov

Valid

An et al.

Pliocene

 China

A pine.

Pinuxylon alonissianum[50]

Sp. nov

Valid

Mantzouka & Sakala in Mantzouka et al.

Early Miocene

 Greece

A member of the family Pinaceae described on the basis of fossil wood.

Schizolepidopsis borealis[51]

Sp. nov

Valid

Domogatskaya & Herman

Early Cretaceous (Albian)

Balyktakh Formation

 Russia

A member of the family Pinaceae.

Podocarpaceae

Name Novelty Status Authors Age Type locality Location Notes Images

Dacrycarpus guipingensis[52]

Sp. nov

Valid

Wu et al.

Miocene

Erzitang Formation

 China

A species of Dacrycarpus. Announced in 2019; the final version of the article naming it was published in 2021.

Kirketapel[53]

Gen. et sp. nov

Valid

Andruchow-Colombo et al.

Paleocene (early Danian)

Salamanca Formation

 Argentina

A member of the family Podocarpaceae.
The type species is K. salamanquensis.

Podocarpus pliomacrophyllus[54]

Sp. nov

In press

Chen et al.

Early Pliocene

 China

A species of Podocarpus. Announced in 2019; the final version of the article naming it is not published yet.

Other conifers

Name Novelty Status Authors Age Type locality Location Notes Images

Cephalotaxus maguanensis[55]

Sp. nov

Valid

Zhang et al.

Middle Miocene

 China

A species of Cephalotaxus.

Cupressinocladus shelikhovii[47]

Sp. nov

Valid

Golovneva

Late Cretaceous (Coniacian)

Chingandzha Formation

 Russia

A cheirolepidiaceous species

Frenelopsis justae[56]

Sp. nov

Valid

Barral et al.

Early Cretaceous (Albian)

Escucha Formation

 Spain

A member of the family Cheirolepidiaceae.

Ningxiaites shitanjingensis[57]

Sp. nov

Valid

Wei et al.

Permian (Changhsingian)

Sunjiagou Formation

 China

A conifer wood.

Protocupressinoxylon carrizalense[58]

Sp. nov

Valid

Correa et al.

Late Triassic

Carrizal Formation

 Argentina

Other seed plants

Name Novelty Status Authors Age Type locality Location Notes Images

Amyelon bogdense[59]

Sp. nov

Valid

Wan, Yang & Wang

Late Permian or Early Triassic

Guodikeng Formation

 China

A silicified gymnospermous root.

Arazedispermum[60]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (late Aptian-early Albian)

Figueira da Foz Formation

 Portugal

A seed plant belonging to the informal grouping Bennettitales-Erdtmanithecales-Gnetales. Genus includes new species A. lustanicum.

Axsmithia[61]

Gen. et comb. nov

Valid

Anderson et al.

Triassic

Antarctica

A seed fern. Genus includes "Umkomasia" uniramia Axsmith et al. (2000).

Bowenia johnsonii[62]

Sp. nov

Valid

Hill et al.

Early Eocene

 Australia

A cycad, a species of Bowenia.

Brinkia[63]

Gen. et 2 sp. nov

Valid

Kustatscher, Visscher & van Konijnenburg-van Cittert

Permian (Lopingian)

Bellerophon Formation
Gröden/Val Gardena Sandstone

 Italy

A possible member of Czekanowskiales. Genus includes new species B. kerpiana and B. cortianensis.

Cordaabaxicutis jacobii[64]

Sp. nov

Valid

Šimůnek

Carboniferous (Pennsylvanian)

 Czech Republic

A member of Cordaitales.

Cordaadaxicutis detmarovicensis[64]

Sp. nov

Valid

Šimůnek

Carboniferous (Pennsylvanian)

 Czech Republic

A member of Cordaitales.

Cordaadaxicutis doubravensis[64]

Sp. nov

Valid

Šimůnek

Carboniferous (Pennsylvanian)

 Czech Republic

A member of Cordaitales.

Cordaadaxicutis jaroslavii[64]

Sp. nov

Valid

Šimůnek

Carboniferous (Pennsylvanian)

 Czech Republic

A member of Cordaitales.

Cordaadaxicutis orlovensis[64]

Sp. nov

Valid

Šimůnek

Carboniferous (Pennsylvanian)

 Czech Republic

A member of Cordaitales.

Cryptokerpia[65]

Gen. et sp. nov

Valid

Blomenkemper, Abu Hamad & Bomfleur

Late Permian

Umm Irna Formation

 Jordan

An enigmatic type of gymnosperm leaf. Genus includes new species C. sarlaccophora.

Douropteris[66]

Gen. et sp. nov

Valid

Correia et al.

Carboniferous (Gzhelian)

Douro Basin

 Portugal

A seed fern belonging to the group Medullosales. Genus includes new species D. alvarezii.

Ephedrispermum tenuicostatum[60]

Sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (Aptian or early Albian)

 Portugal

A seed plant belonging to the informal grouping Bennettitales-Erdtmanithecales-Gnetales.

Geminispermum[67]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (Albian)

Potomac Group

 United States
( Virginia)

A seed plant belonging to the informal grouping Caytoniales-Umkomasiales-Petriellales. Genus includes new species G. virginiense.

Glossopteris thirroulensis[68]

Sp. nov

Valid

McLoughlin & Mays in McLoughlin, Maksimenko & Mays

Permian (Wuchiapingian)

Wilton Formation

 Australia

Hirsutisperma[69]

Gen. et sp. nov

Valid

Scott et al.

Carboniferous (Viséan)

 United Kingdom

An ovule adapted for wind dispersal and for deterring herbivory. Genus includes new species H. rothwellii.

Huncocladus[70]

Gen. et sp. nov

Valid

Andruchow-Colombo, Wilf & Escapa

Early Eocene

La Huitrera Formation

 Argentina

A seed plant of uncertain phylogenetic placement. Originally described as a member of the family Podocarpaceae related to the genus Phyllocladus; on the other hand, Dörken et al. (2021) rejected the podocarpaceous affinity of Huncocladus, and considered it to be more closely related to the cycad genera Bowenia or Eobowenia.[71][72] Genus includes new species H. laubenfelsii.

Illawarraspermum[68]

Gen. et sp. nov

Valid

McLoughlin & Mays in McLoughlin, Maksimenko & Mays

Permian (Wuchiapingian)

Wilton Formation

 Australia

A glossopterid seed. Genus includes new species I. ovatum.

Kirchmuellia[61]

Gen. et comb. nov

Valid

Anderson et al.

Early Jurassic

 Germany

A seed fern. Genus includes "Umkomasia" franconica Kirchner & Müller (1992).

Lepidopteris scassoi[73]

Sp. nov

Valid

Elgorriaga, Escapa & Cúneo

Early Jurassic

Cañadón Asfalto Formation

 Argentina

Lignieriopsis[60]

Gen. et 2 sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (late Aptian-Albian)

Figueira da Foz Formation
Potomac Group

 Portugal
 United States
( Virginia)

A seed plant belonging to the informal grouping Bennettitales-Erdtmanithecales-Gnetales. Genus includes new species L. stenosperma and L. parva.

Mariopteris hexiensis[74]

Sp. nov

Valid

Wang et al.

Permian (Cisuralian)

Shanxi Formation

 China

Announced in 2019; the final version of the article naming it was published in 2021.

Mariopteris yongchangensis[74]

Sp. nov

Valid

Wang et al.

Permian (Cisuralian)

Shanxi Formation

 China

Announced in 2019; the final version of the article naming it was published in 2021.

Muelkirchium[75]

Gen. et comb. nov

Valid

Anderson et al.

Early Jurassic

 Germany

A seed fern. Genus includes "Pteruchus" septentrionalis Kirchner & Müller (1992).

Mutoviaspermum[76]

Gen. et sp. nov

Valid

Karasev et al.

Permian (Lopingian)

Poldarsa Formation

 Russia
(Template:Country data Vologda Oblast)

A member of Voltziales. Genus includes new species M. krassilovii.

Noeggerathiopsis brasiliensis[77]

Nom. nov

Valid

Degani-Schmidt & Guerra-Sommer

Early Permian

Rio Bonito Formation

 Brazil

A member of Cordaitales; a replacement name for Rufloria gondwanensis Guerra-Sommer (1989).

Potoniea krisiae[78]

Sp. nov

Valid

Pšenička, Zodrow & Bek

Carboniferous (Moscovian)

Sydney Coalfield

 Canada
( Nova Scotia)

Reproductive male organ of a seed fern, possibly a member of the family Parispermaceae.

Protophyllocladoxylon zhaobishanensis[79]

Sp. nov

Valid

Wan, Yang & Wang

Early Triassic (Induan)

Jiucaiyuan Formation

 China

A silicified gymnospermous fossil wood.

Pseudotorellia yimaensis[80]

Sp. nov

Valid

Dong et al.

Middle Jurassic

Yima Formation

 China

Ptilophyllum eminelidarum[81]

Sp. nov

Valid

Carrizo, Lafuente Diaz & Del Fueyo

Early Cretaceous

Springhill Formation

 Argentina

A member of Bennettitales.

Ptilophyllum micropapillosum[82]

Sp. nov

Valid

Lafuente Diaz et al.

Early Cretaceous

Springhill Formation

 Argentina

A member of Bennettitales.

Rothwellia[60]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (Albian)

Potomac Group

 United States
( Virginia)

A seed plant belonging to the informal grouping Bennettitales-Erdtmanithecales-Gnetales. Genus includes new species R. foveata.

Sagenopteris trapialensis[83]

Sp. nov

Valid

Elgorriaga, Escapa & Cúneo

Early Jurassic

Lonco Trapial Formation

 Argentina

A member of Caytoniales.

Sclerospiroxylon xinjiangensis[84]

Sp. nov

Valid

Wan, Yang & Wang

Permian (Kungurian)

Hongyanchi Formation

 China

Sueria laxinervis[85]

Sp. nov

Valid

Yamada & Nishida in Yamada et al.

Late Cretaceous (Maastrichtian)

Quiriquina Formation

 Chile

A cycad.

Thodaya[60]

Gen. et sp. nov

Junior homonym

Friis, Crane & Pedersen

Early Cretaceous (Albian)

Potomac Group

 United States
( Virginia)

A seed plant belonging to the informal grouping Bennettitales-Erdtmanithecales-Gnetales. Genus includes new species T. sykesiae. The generic name is preoccupied by Thodaya Compton.

Umaltolepis yimaensis[80]

Sp. nov

Valid

Dong et al.

Middle Jurassic

Yima Formation

 China

Umkomasia corniculata[86]

Sp. nov

Valid

Shi et al.

Early Cretaceous (AptianAlbian)

 Mongolia

Umkomasia trilobata[86]

Sp. nov

Valid

Shi et al.

Early Cretaceous (AptianAlbian)

 Mongolia

Wangjunia[87]

Gen. et sp. nov

Valid

Backer, Bomfleur & Kerp

Permian (Guadalupian)

Lower Shihhotse Formation

 China

A member of Cordaitales. Genus includes new species W. microphylla.

Xuanweioxylon damogouense[88]

Sp. nov

Valid

Yang et al.

Permian (Lopingian)

Xuanwei Formation

 China

A conifer stem.

Zhangwuia[89]

Gen. et sp. nov

Valid

Liu, Hou & Wang

Middle Jurassic (Callovian)

Jiulongshan Formation

 China

A reproductive organ of a seed plant of uncertain phylogenetic placement. Genus includes new species Z. mira.

Flowering plants

Basal angiosperms

Nymphaeales

Name Novelty Status Authors Age Type locality Location Notes Images

Nuphaea[90]

Gen. et sp. nov

Valid

Gee & Taylor

Eocene

Messel pit

 Germany

A member of Nymphaeaceae. Genus includes new species N. engelhardtii.

Other basal angiosperms

Name Novelty Status Authors Age Type locality Location Notes Images

Anaspermum[91]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (late Barremian-early Aptian)

Almargem Formation

 Portugal

A flowering plant with affinities to Austrobaileyales or Nymphaeales. Genus includes new species A. operculatum.

Gastonispermum antiquum[91]

Sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (late Barremian-early Aptian)

Almargem Formation

 Portugal

A flowering plant with affinities to Austrobaileyales or Nymphaeales.

Monocots

Alismatales

Name Novelty Status Authors Age Type locality Location Notes Images

Natantisphyllum[92]

Gen. et sp. nov

Valid

Puebla, Vento & Prámparo

Late Cretaceous

 Argentina

A member of the family Araceae. Genus includes new species N. crenae. Announced in 2019; the final version of the article naming it was published in 2021.

Orontiophyllum ferreri[93]

Sp. nov

Valid

Sender et al.

Early Cretaceous (Albian)

 Spain

A member or a relative of the family Araceae.

Turolospadix[93]

Gen. et sp. nov

Valid

Sender et al.

Early Cretaceous (Albian)

 Spain

A member or a relative of the family Araceae. Genus includes new species T. bogneri.

Arecales

Name Novelty Status Authors Age Type locality Location Notes Images

Palmoxylon deoriensis[94]

Sp. nov

Valid

Khan, Mandal & Bera

Late Cretaceous (late Maastrichtian) – early Paleocene (Danian)

Deccan Intertrappean Beds

 India

A permineralized palm stem.

Sabalites tibetensis[95]

Sp. nov

Valid

Su & Zhou in Su et al.

Oligocene (Chattian)

Lunpola Basin

 China

A member of the family Arecaceae belonging to the subfamily Coryphoideae.

Sclerosperma protoprofizianum[96]

Sp. nov

Valid

Grímsson & Zetter in Grímsson et al.

Late Oligocene

 Ethiopia

A species of Sclerosperma.

Sclerosperma protomannii[96]

Sp. nov

Valid

Grímsson & Zetter in Grímsson et al.

Late Oligocene

 Ethiopia

A species of Sclerosperma.

Spinopalmoxylon cicatricosum[97]

Sp. nov

Valid

Winterscheid

Oligocene

Köln Formation

 Germany

A member of the family Arecaceae belonging to the tribe Calameae.

Spinopalmoxylon parvifructum[97]

Sp. nov

Valid

Winterscheid

Oligocene

Köln Formation

 Germany

A member of the family Arecaceae belonging to the tribe Calameae.

Spinizonocolpites riochiquensis[98]

Sp. nov

Valid

Vallati & De Sosa Tomas in Vallati, De Sosa Tomas & Casal

Late Cretaceous (Maastrichtian)

Lago Colhué Huapí Formation

 Argentina

A member of Arecaceae described on the basis of fossil pollen grains. Announced in 2019; the final version of the article naming it was published in 2020.

Dioscoreales

Name Novelty Status Authors Age Type locality Location Notes Images

Dioscorea eocenicus[99]

Sp. nov

Valid

Mehrotra & Shukla

Early Eocene

 India

A species of Dioscorea.

Dioscorea manchesteri[100]

Sp. nov

Valid

Kvaček

Miocene

Most Formation

 Czech Republic

A species of Dioscorea.

Poales

Name Novelty Status Authors Age Type locality Location Notes Images

Bambusiculmus makumensis[101]

Sp. nov

Valid

Srivastava et al.

Late Oligocene

 India

A bamboo.

Bambusiculmus tirapensis[101]

Sp. nov

Valid

Srivastava et al.

Late Oligocene

 India

A bamboo.

Bambusium arunachalense[101]

Sp. nov

Valid

Srivastava et al.

Late Miocene to Pliocene

 India

A bamboo.

Bambusium deomarense[101]

Sp. nov

Valid

Srivastava et al.

Late Miocene to Pliocene

 India

A bamboo.

Scirpus weichangensis[102]

Sp. nov

Valid

Liang in Lu et al.

Early Miocene

Hannuoba Formation

 China

A species of Scirpus.

Magnoliids

Laurales

Name Novelty Status Authors Age Type locality Location Notes Images

Cinnamomum raptiensis[103]

Sp. nov

Valid

Prasad et al.

Middle Miocene

Lower Churia Group

   Nepal

A species of Cinnamomum.

Laurinoxylon acalensis[104]

Sp. nov

Valid

Pérez-Lara, Estrada-Ruiz & Castañeda-Posadas

Eocene

El Bosque Formation

 Mexico

A member of Lauraceae.

Laurinoxylon thomasii[105]

Sp. nov

Valid

Akkemik in Akkemik, Akkılıç & Güngör

Early Miocene

 Turkey

Laurophyllum alseodaphnoides[106]

Sp. nov

Valid

Wang & Sun in Wang et al.

Miocene (Langhian)

Fotan Group

 China

A member of Lauraceae described on the basis of fossil leaves.

Laurophyllum fotanensis[106]

Sp. nov

Valid

Wang & Sun in Wang et al.

Miocene (Langhian)

Fotan Group

 China

A member of Lauraceae described on the basis of fossil leaves.

Laurophyllum lindaiensis[106]

Sp. nov

Valid

Wang & Sun in Wang et al.

Miocene (Langhian)

Fotan Group

 China

A member of Lauraceae described on the basis of fossil leaves.

Laurophyllum triangulatum[106]

Sp. nov

Valid

Wang & Sun in Wang et al.

Miocene (Langhian)

Fotan Group

 China

A member of Lauraceae described on the basis of fossil leaves.

Laurophyllum zhangpuensis[106]

Sp. nov

Valid

Wang & Sun in Wang et al.

Miocene (Langhian)

Fotan Group

 China

A member of Lauraceae described on the basis of fossil leaves.

Mezilaurinoxylon oleiferum[107]

Sp. nov

Valid

Ruiz, Brea & Pujana in Ruiz et al.

Paleocene (Danian)

Salamanca Formation

 Argentina

A member of the family Lauraceae. Announced in 2019; the final version of the article naming it is scheduled to be published in 2020.

Patagonoxylon[107]

Gen. et sp. nov

Valid

Ruiz, Brea & Pujana in Ruiz et al.

Paleocene (Danian)

Salamanca Formation

 Argentina

A Lauralean of uncertain phylogenetic placement.
The type species is P. scalariforme.
Announced in 2019; the final version of the article naming it is scheduled to be published in 2020.

Persea masotkholaensis[103]

Sp. nov

Valid

Prasad et al.

Middle Miocene

Lower Churia Group

   Nepal

A species of Persea.

Magnoliales

Name Novelty Status Authors Age Type locality Location Notes Images

Anaxagorea mioluzonensis[103]

Sp. nov

Valid

Prasad et al.

Late Miocene

Middle Churia Group

   Nepal

A species of Anaxagorea.

Anonaspermum orientalis[108]

Sp. nov

Valid

Li et al.

Late Oligocene

Yongning Formation

 China

A member of the family Annonaceae.

Mitrephora mioreticulata[103]

Sp. nov

Valid

Prasad et al.

Late Miocene

Middle Churia Group

   Nepal

A species of Mitrephora.

Riaselis[109]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (late Aptian-early Albian or older)

 Portugal

Genus includes new species R. rugosa.

Serialis[109]

Gen. et 9 sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (late Barremian-early Albian)

Almargem Formation
Figueira da Foz Formation

 Portugal

Genus includes new species S. antiqua, S. parva, S. elongata, S. tenuitesta, S. communis, S. crassitesta, S. grossa, S. undata and S. reticulata.

Uvaria miolucida[103]

Sp. nov

Valid

Prasad et al.

Late Miocene

Middle Churia Group

   Nepal

A species of Uvaria.

Piperales

Name Novelty Status Authors Age Type locality Location Notes Images

Appofructus[91]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (late Barremian-early Aptian)

Almargem Formation

 Portugal

Genus includes new species A. nudus.

Appomattoxia minuta[91]

Sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (late Barremian-early Aptian)

Almargem Formation

 Portugal

Burgeria[91]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (late Barremian-early Aptian)

Almargem Formation

 Portugal

Genus includes new species B. striata.

Dejaxia[91]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (late Barremian-early Aptian)

Almargem Formation

 Portugal

Genus includes new species D. brevicolpites.

Goczania[91]

Gen. et 3 sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (late Barremian-early Aptian)

Almargem Formation

 Portugal

Genus includes new species G. rugosa, G. inaequalis and G. punctata.

Unplaced non-eudicots

Chloranthales

Name Novelty Status Authors Age Type locality Location Notes Images

Canrightia elongata[91]

Sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (late Barremian-early Aptian)

Almargem Formation

 Portugal

Hedyflora[110]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (late Aptian–early Albian)

Figueira da Foz Formation

 Portugal

A member of the family Chloranthaceae. Genus includes new species H. crystallifera.

Kvacekispermum costatum[91]

Sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (late Barremian-early Aptian)

Almargem Formation

 Portugal

Basal eudicots

Proteales

Name Novelty Status Authors Age Type locality Location Notes Images

Meliosma berryi[111]

Sp. nov

Valid

Huegele & Manchester

Probably late Eocene

 United States
( Texas)

A species of Meliosma.

Platanus heilongjiangensis[112]

Sp. nov

Valid

Sun et al.

Late Cretaceous (China )

Houshiigou Formation

 China

A species of Platanus.

Scalarixylon romeroi[113]

Sp. nov

Valid

Pujana & Ruiz

Eocene–Oligocene

Río Turbio Formation

 Argentina

Ranunculales

Name Novelty Status Authors Age Type locality Location Notes Images

Tinospora siwalika[103]

Sp. nov

Valid

Prasad et al.

Late Miocene

Middle Churia Group

   Nepal

A species of Tinospora.

Superasterids

Aquifoliales

Name Novelty Status Authors Age Type locality Location Notes Images

Ilex angustifolioides[114]

Nom. nov

Valid

Doweld

Miocene

 Germany

A holly; a replacement name for Ilex denticulata von Heer (1857).

Ilex aschutassica[114]

Nom. nov

Valid

Doweld

Oligocene

 Kazakhstan

A holly; a replacement name for Ilex integrifolia Baikovskaja (1956).

Ilex boulayi[114]

Nom. nov

Valid

Doweld

Miocene

 France

A holly; a replacement name for Ilex undulata Boulay (1887).

Ilex friedrichii[114]

Nom. nov

Valid

Doweld

Oligocene

 Germany

A holly; a replacement name for Ilex longifolia Friedrich (1884).

Ilex latifolioides[114]

Nom. nov

Valid

Doweld

Oligocene

 France

A holly; a replacement name for Ilex acuminata Saporta (1865).

Ilex mormonica[114]

Nom. nov

Valid

Doweld

Oligocene

 United States
( Montana)

A holly; a replacement name for Ilex acuminata Becker (1960).

Ilex opacina[114]

Nom. nov

Valid

Doweld

Oligocene

 France

A holly; a replacement name for Ilex microdonta Saporta (1865).

Ilex polarica[114]

Nom. nov

Valid

Doweld

Paleocene

 Greenland

A holly; a replacement name for Ilex macrophylla von Heer (1869).

Ilex subrotunda[114]

Sp. nov

Valid

Doweld

Miocene

 Japan

A holly; a replacement name for the previously invalidly published Ilex ohashii Huzioka (1963), lacking holotype designation when published.

Asterales

Name Novelty Status Authors Age Type locality Location Notes Images

Cichoreacidites? igapoensis[24]

Sp. nov

Valid

D'Apolito et al.

Pliocene–Pleistocene

 Brazil

Fossil pollen of a member of the genus Pacourina or Vernonia.

Boraginales

Name Novelty Status Authors Age Type locality Location Notes Images

Cordia siwalica[103]

Sp. nov

Valid

Prasad et al.

Middle Miocene

Lower Churia Group

   Nepal

A species of Cordia.

Caryophyllales

Name Novelty Status Authors Age Type locality Location Notes Images

Basella keralensis[115]

Sp. nov

Valid

Farooqui, Ray & Garg

Pleistocene

 India

A species of Basella.

Cornales

Name Novelty Status Authors Age Type locality Location Notes Images

Eydeia jerseyensis[116]

Sp. nov

Valid

Atkinson, Martínez & Crepet

Late Cretaceous (Turonian)

 United States
( New Jersey)

Ericales

Name Novelty Status Authors Age Type locality Location Notes Images

Juddicarpon[117]

Gen. et sp. nov

Valid

Smith & Manchester

Miocene (Burdigalian-Langhian)

Clarkia fossil beds

 United States
( Idaho)

A member of Vaccinioideae. Genus includes new species J. benewahensis.

Psilastephanocolporites brevissimus[24]

Sp. nov

Valid

D'Apolito et al.

Pliocene–Pleistocene

 Brazil

Fossil pollen of a flowering plant, possibly a member of the genus Myrsine.

Sladenia zhengyii[118]

Sp. nov

Valid

Jia & Zhou in Jia et al.

Early Miocene

Maguan Basin

 China

A member of the family Sladeniaceae. Announced in 2019; the final version of the article naming it was published in 2021.

Symplocos amoena[111]

Sp. nov

Valid

Huegele & Manchester

Probably late Eocene

 United States
( Texas)

A species of Symplocos.

Symplocos fritschii[111]

Sp. nov

Valid

Huegele & Manchester

Probably late Eocene

 United States
( Texas)

A species of Symplocos.

Symplocos martinettoi[111]

Sp. nov

Valid

Huegele & Manchester

Probably late Eocene

 United States
( Texas)

A species of Symplocos.

Symplocos platycarpa[111]

Sp. nov

Valid

Huegele & Manchester

Probably late Eocene

 United States
( Texas)

A species of Symplocos.

Symplocos rothwelii[111]

Sp. nov

Valid

Huegele & Manchester

Probably late Eocene

 United States
( Texas)

A species of Symplocos.

Symplocos trinitiensis[111]

Sp. nov

Valid

Huegele & Manchester

Probably late Eocene

 United States
( Texas)

A species of Symplocos.

Symplocos trisulcata[111]

Sp. nov

Valid

Huegele & Manchester

Probably late Eocene

 United States
( Texas)

A species of Symplocos.

Gentianales

Name Novelty Status Authors Age Type locality Location Notes Images

Calycophyllum plengei[119]

Sp. nov

Valid

Woodcock, Meyer & Prado

Eocene

Piedra Chamana Fossil Forest

 Peru

A species of Calycophyllum.

Psilatriporites aspidatus[24]

Sp. nov

Valid

D'Apolito et al.

Pliocene–Pleistocene

 Brazil

Fossil pollen of a member of the genus Faramea.

Randia premacrophylla[103]

Sp. nov

Valid

Prasad et al.

Late Miocene

Middle Churia Group

   Nepal

A species of Randia.

Icacinales

Name Novelty Status Authors Age Type locality Location Notes Images

Iodes acuta[120]

Sp. nov

Valid

Del Rio, Stull & De Franceschi

Early Eocene

 France

A member of the family Icacinaceae.

Iodes parva[121]

Sp. nov

Valid

Del Rio, Thomas & De Franceschi

Late Paleocene

 France

A member of the family Icacinaceae.

Iodes reidii[121]

Sp. nov

Valid

Del Rio, Thomas & De Franceschi

Late Paleocene

 France

A member of the family Icacinaceae.

Iodes rigida[120]

Sp. nov

Valid

Del Rio, Stull & De Franceschi

Early Eocene

 France

A member of the family Icacinaceae.

Iodes rivecourtensis[121]

Sp. nov

Valid

Del Rio, Thomas & De Franceschi

Late Paleocene

 France

A member of the family Icacinaceae.

Iodes sinuosa[121]

Sp. nov

Valid

Del Rio, Thomas & De Franceschi

Late Paleocene

 France

A member of the family Icacinaceae.

Iodes tubulifera[121]

Sp. nov

Valid

Del Rio, Thomas & De Franceschi

Late Paleocene

 France

A member of the family Icacinaceae.

Superrosids

Malvids

Malvales
Name Novelty Status Authors Age Type locality Location Notes Images

Anisoptera palaeoscaphula[103]

Sp. nov

Valid

Prasad et al.

Late Miocene

Middle Churia Group

   Nepal

A species of Anisoptera.

Ceiba archeopentandra[119]

Sp. nov

Valid

Woodcock, Meyer & Prado

Eocene

Piedra Chamana Fossil Forest

 Peru

A species of Ceiba.

Ceiba huancabambiana[119]

Sp. nov

Valid

Woodcock, Meyer & Prado

Eocene

Piedra Chamana Fossil Forest

 Peru

A species of Ceiba.

Dipterocarpus palaeoindicus[103]

Sp. nov

Valid

Prasad et al.

Late Miocene

Middle Churia Group

   Nepal

A species of Dipterocarpus.

Dryobalanoxylon neosumatrense[122]

Sp. nov

Valid

Biswas, Khan & Bera

Late Miocene

 India

A member of the family Dipterocarpaceae.

Grewia americana[119]

Sp. nov

Valid

Woodcock, Meyer & Prado

Eocene

Piedra Chamana Fossil Forest

 Peru

A species of Grewia.

Grewia nepalensis[103]

Sp. nov

Valid

Prasad et al.

Middle Miocene

Lower Churia Group

   Nepal

A species of Grewia.

Grewia palaeodisperma[103]

Sp. nov

Valid

Prasad et al.

Late Miocene

Middle Churia Group

   Nepal

A species of Grewia.

Guazuma santacruzensis[119]

Sp. nov

Valid

Woodcock, Meyer & Prado

Eocene

Piedra Chamana Fossil Forest

 Peru

A member of the family Malvaceae.

Luehea stratificata[119]

Sp. nov

Valid

Woodcock, Meyer & Prado

Eocene

Piedra Chamana Fossil Forest

 Peru

A species of Luehea.

Muntingia solapora[119]

Sp. nov

Valid

Woodcock, Meyer & Prado

Eocene

Piedra Chamana Fossil Forest

 Peru

A species of Muntingia.

Ochroma pozoensis[119]

Sp. nov

Valid

Woodcock, Meyer & Prado

Eocene

Piedra Chamana Fossil Forest

 Peru

A species of Ochroma.

Sterculia arjunkholaensis[103]

Sp. nov

Valid

Prasad et al.

Middle Miocene

Lower Churia Group

   Nepal

A species of Sterculia.

Sterculia matrum[119]

Sp. nov

Valid

Woodcock, Meyer & Prado

Eocene

Piedra Chamana Fossil Forest

 Peru

A species of Sterculia.

Vasivaea weigendii[119]

Sp. nov

Valid

Woodcock, Meyer & Prado

Eocene

Piedra Chamana Fossil Forest

 Peru

Sapindales
Name Novelty Status Authors Age Type locality Location Notes Images

Ailanthus maximus[123]

Sp. nov

Valid

Liu, Su & Zhou in Liu et al.

Latest Paleocene to the Late Oligocene

Lunpola Basin
Nima Basin

 China

A species of Ailanthus.

Antrocaryon panamaensis[124]

Sp. nov

Valid

Herrera et al.

Early Miocene

Cucaracha Formation

 Panama

A species of Antrocaryon.

Arytera miolittoralis[103]

Sp. nov

Valid

Prasad et al.

Late Miocene

Middle Churia Group

   Nepal

A species of Arytera.

Arytera nepalensis[103]

Sp. nov

Valid

Prasad et al.

Late Miocene

Middle Churia Group

   Nepal

A species of Arytera.

Buchanania raptiensis[103]

Sp. nov

Valid

Prasad et al.

Late Miocene

Middle Churia Group

   Nepal

A species of Buchanania.

Dodonaea piedra-chamana[119]

Sp. nov

Valid

Woodcock, Meyer & Prado

Eocene

Piedra Chamana Fossil Forest

 Peru

A species of Dodonaea.

Dracontomelon montesii[124]

Sp. nov

Valid

Herrera et al.

Early Miocene

Cucaracha Formation

 Panama

A species of Dracontomelon.

Erythrochiton masotkholaensis[103]

Sp. nov

Valid

Prasad et al.

Late Miocene

Middle Churia Group

   Nepal

A species of Erythrochiton.

Euphoria churiaensis[103]

Sp. nov

Valid

Prasad et al.

Middle Miocene

Lower Churia Group

   Nepal

A member of the family Sapindaceae.

Koelreuteria lunpolaensis[125]

Sp. nov

Valid

Jiang et al.

Late Oligocene

Lunpola Basin

 China

A species of Koelreuteria.

Rhus asymmetrica[126]

Sp. nov

Valid

Tosal, Sanjuan & Martín-Closas

Early Oligocene

 Spain

A sumac.

Rhus boothillensis[127]

Sp. nov

Valid

Flynn, DeVore & Pigg

Early Eocene

Klondike Mountain Formation

 United States
( Washington)

A sumac.

Rhus boothillensi

Rhus garwellii[127]

Sp. nov

Valid

Flynn, DeVore & Pigg

Early Eocene

Klondike Mountain Formation

 United States
( Washington)

A sumac.

Rhus garwellii

Rhus republicensis[127]

Sp. nov

Valid

Flynn, DeVore & Pigg

Early Eocene

Klondike Mountain Formation

 United States
( Washington)

A sumac.

Sapindus palaeomukorossi[103]

Sp. nov

Valid

Prasad et al.

Middle Miocene

Lower Churia Group

   Nepal

A species of Sapindus.

Spondias rothwellii[124]

Sp. nov

Valid

Herrera et al.

Early Miocene

Cucaracha Formation

 Panama

A species of Spondias.

Zanthoxylum reynelii[119]

Sp. nov

Valid

Woodcock, Meyer & Prado

Eocene

Piedra Chamana Fossil Forest

 Peru

A species of Zanthoxylum.

Other malvids
Name Novelty Status Authors Age Type locality Location Notes Images

Akania gibsonorum[128]

Sp. nov

Valid

Conran et al.

Early Miocene

 New Zealand

A member of the family Akaniaceae.

Combretum siwalicum[103]

Sp. nov

Valid

Prasad et al.

Late Miocene

Middle Churia Group

   Nepal

A species of Combretum.

Eugenia nepalensis[103]

Sp. nov

Valid

Prasad et al.

Late Miocene

Middle Churia Group

   Nepal

A species of Eugenia.

Miconioidea[119]

Gen. et sp. nov

Valid

Woodcock, Meyer & Prado

Eocene

Piedra Chamana Fossil Forest

 Peru

A member of the family Melastomataceae. Genus includes new species M. eocenica.

Myrceugenellites grandiporosum[107]

Sp. nov

Valid

Ruiz, Brea & Pujana in Ruiz et al.

Paleocene (Danian)

Salamanca Formation

 Argentina

A member of the family Myrtaceae. Announced in 2019; the final version of the article naming it is scheduled to be published in 2020.

Staphylea ochoterenae[129]

Sp. nov

Valid

Hernández-Damián, Cevallos-Ferriz & Huerta-Vergara

Miocene

 Mexico

A species of Staphylea.

Terminalia arjunkholaensis[103]

Sp. nov

Valid

Prasad et al.

Late Miocene

Middle Churia Group

   Nepal

A species of Terminalia.

Turpinia tiffneyi[111]

Sp. nov

Valid

Huegele & Manchester

Probably late Eocene

 United States
( Texas)

A species of Turpinia.

Fabids

Fabales
Name Novelty Status Authors Age Type locality Location Notes Images

Arcoa lindgreni[130]

Sp. nov

Valid

Herendeen & Herrera

Eocene

Green River Formation

 United States
( Wyoming)

A species of Arcoa.

Bauhinia palaeomonandra[103]

Sp. nov

Valid

Prasad et al.

Middle Miocene

Lower Churia Group

   Nepal

A species of Bauhinia.

Butea nepalensis[103]

Sp. nov

Valid

Prasad et al.

Late Miocene

Middle Churia Group

   Nepal

A species of Butea.

Cassia arjunkholaensis[103]

Sp. nov

Valid

Prasad et al.

Late Miocene

Middle Churia Group

   Nepal

A species of Cassia.

Cercioxylon zeynepae[43]

Sp. nov

Valid

Akkemik

Pliocene

Örencik Formation

 Turkey

A relative of redbuds described on the basis of fossil wood.

Gleditsia europaea[131]

Sp. nov

Valid

Worobiec in Worobiec & Worobiec

Miocene

 Poland

A species of Gleditsia.

Hopeoxylon umarsarensis[132]

Sp. nov

Valid

Shukla, Singh & Mehrotra

Early Eocene

Naredi Formation

 India

A member of the family Fabaceae belonging to the subfamily Detarioideae.

Leguminophyllum kvacekii[131]

Sp. nov

Valid

Worobiec in Worobiec & Worobiec

Miocene

 Poland

Fossil leaflets resembling leaflets of extant and fossil members of Fabaceae.

Millettia arjunkholaensis[103]

Sp. nov

Valid

Prasad et al.

Middle Miocene

Lower Churia Group

   Nepal

A species of Millettia.

Mimosoxylon ceratonioides[105]

Sp. nov

Valid

Akkemik in Akkemik, Akkılıç & Güngör

Early Miocene

 Turkey

Ormosia zhangpuensis[133]

Sp. nov

Valid

Wang et al.

Miocene

 China

A species of Ormosia.

Saraca palaeoindica[103]

Sp. nov

Valid

Prasad et al.

Late Miocene

Middle Churia Group

   Nepal

A species of Saraca.

Sindora eosiamensis[103]

Sp. nov

Valid

Prasad et al.

Middle Miocene

Lower Churia Group

   Nepal

A species of Sindora.

Sindora leguminocarpoides[103]

Sp. nov

Valid

Prasad et al.

Middle Miocene

Lower Churia Group

   Nepal

A species of Sindora.

Tzotziloxylon[134]

Gen. et 2 sp. nov

Valid

Pérez-Lara & Estrada-Ruiz in Pérez-Lara, Estrada-Ruiz & Castañeda-Posadas

Eocene

El Bosque Formation

 Mexico

A member of the family Fabaceae belonging to the subfamily Cercidoideae or Dialioideae. Genus includes new species T. cristalliferum and T. eocenica.

Fagales
Name Novelty Status Authors Age Type locality Location Notes Images

Castanopsis rothwellii[135][136][137]

Sp. nov

Valid

Wilf et al.

Eocene

 Argentina

A species of Castanopsis.

Casuarinoxylon ildephonsi[138]

Sp. nov

Valid

Vanner

Miocene

 New Zealand

A member of the family Casuarinaceae described on the basis of fossil wood.

Engelhardia trinitiensis[111]

Sp. nov

Valid

Huegele & Manchester

Probably late Eocene

 United States
( Texas)

A species of Engelhardia.

Pterocaryoxylon tuncayi[105]

Sp. nov

Valid

Akkemik in Akkemik, Akkılıç & Güngör

Early Miocene

 Turkey

Quercus shangcunensis[139]

Sp. nov

Valid

Liu et al.

Early Oligocene

Shangcun Formation

 China

An oak

Malpighiales
Name Novelty Status Authors Age Type locality Location Notes Images

Calophyllum mioelatum[103]

Sp. nov

Valid

Prasad et al.

Late Miocene

Middle Churia Group

   Nepal

A species of Calophyllum.

Calophyllum zhangpuensis[140]

Sp. nov

Valid

Wang et al.

Miocene

Fotan Group

 China

A species of Calophyllum.

Elioxylon[141]

Gen. et sp. nov

Valid

Srivastava, Miller & Baas

Late Cretaceous (Maastrichtian)–Paleocene (Danian)

Deccan Intertrappean Beds

 India

A wood morphospecies with features of Achariaceae and Salicaceae. Type species includes new species E. seoniensis.

Garcinia zhangpuensis[142]

Sp. nov

Valid

Wang et al.

Middle Miocene

Fotan Group

 China

A species of Garcinia.

Mascogophyllum[143]

Gen. et sp. nov

Valid

Centeno-González, Porras-Múzquiz & Estrada-Ruiz

Late Cretaceous (late Campanian)

Olmos Formation

 Mexico

A possible member of Violaceae. Genus includes new species M. elizondoa.

Populus erratica[144]

Nom. nov

Valid

Sachse

Late Oligocene and early Miocene

  Switzerland
 France?
 Germany?
 Hungary?

A species of Populus; a replacement name for Juglans heerii Ettingshausen (1853).

Ryparia arjunkholaensis[103]

Sp. nov

Valid

Prasad et al.

Late Miocene

Middle Churia Group

   Nepal

A member of the family Achariaceae.

Oxalidales
Name Novelty Status Authors Age Type locality Location Notes Images

Caldcluvioxylon torresiae[113]

Sp. nov

Valid

Pujana & Ruiz

Eocene–Oligocene

Río Turbio Formation

 Argentina

A member of the family Cunoniaceae.

Tropidogyne lobodisca[145]

Sp. nov

Valid

Poinar & Chambers

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A probable member of Cunoniaceae.

Rosales
Name Novelty Status Authors Age Type locality Location Notes Images

Artocarpus arjunkholaensis[103]

Sp. nov

Valid

Prasad et al.

Late Miocene

Middle Churia Group

   Nepal

A species of Artocarpus.

Cedrelospermum tibeticum[146]

Sp. nov

Valid

Jia, Su & Zhou in Jia et al.

Late Oligocene

Dingqing Formation

 China

A member of Ulmaceae.

Ficus preglobosa[103]

Sp. nov

Valid

Prasad et al.

Middle Miocene

Lower Churia Group

   Nepal

A species of Ficus.

Frangulops[114]

Gen. et comb. nov

Valid

Doweld

Eocene

 United States
( Colorado)

A member of Rhamnaceae; a new genus for "Ilex" pseudostenophylla Lesquereux (1883).

Prunoidoxylon aytugii[105]

Sp. nov

Valid

Akkemik in Akkemik, Akkılıç & Güngör

Early Miocene

 Turkey

Pteroceltis shanwangensis[147]

Sp. nov

Valid

Wong, Dilcher & Uemura

Miocene

Shanwang Formation

 China

A species of Pteroceltis.

Pteroceltis taoae[147]

Sp. nov

Valid

Wong, Dilcher & Uemura

Miocene

 China

A species of Pteroceltis.

Rubus eubaticus[148]

Nom. nov

Valid

Doweld

Miocene

 Bulgaria

A species of Rubus; a replacement name for Rubus mucronatus Palamarev (1987).

Rubus primoricus[148]

Nom. nov

Valid

Doweld

Miocene

 Russia
(Template:Country data Primorsky Krai)

A species of Rubus; a replacement name for Rubus ellipticus Pavlyutkin (2005).

Ulmus prestonia[149]

Sp. nov

Valid

Lott, Manchester & Corbett

Miocene

 United States
( Florida)

An elm.

Unplaced superrosid eudicots

Name Novelty Status Authors Age Type locality Location Notes Images

Cayratia palaeojaponica[103]

Sp. nov

Valid

Prasad et al.

Late Miocene

Middle Churia Group

   Nepal

A species of Cayratia.

Liquidambar bella[150]

Sp. nov

Valid

Maslova et al.

Eocene

Huangniuling Formation

 China

A Liquidambar species saxifragale.

Yua texana[111]

Sp. nov

Valid

Huegele & Manchester

Probably late Eocene

 United States
( Texas)

A Yua species vitale.

Other angiosperms

Name Novelty Status Authors Type locality Type locality Location Notes Images

Baccatocarpon[151]

Gen. et comb. nov

Valid

Bhowal & Sheikh ex Manchester, Ramteke, Kapgate & Smith

Late Cretaceous (Maastrichtian)

Deccan Intertrappean Beds

 India

A fossil fruit of a flowering plant of uncertain affinities; a new genus for "Grewia" mohgaoensis Paradkar & Dixit (1984).

Battenipollis sabrinae[152]

Sp. nov

Valid

Smith et al.

Early Paleogene

Antarctica

An angiosperm pollen species.

Bonanzacarpum[153]

Gen. et sp. nov

Valid

Manchester & Lott

Early to middle Eocene

Green River Formation

 United States
( Utah)

A eudicot fossil fruit of uncertain phylogenetic placement.
The type species is B. sprungerorum.

Celastrilex[114]

Gen. et comb. nov

Valid

Doweld

Paleocene

 United States
( Colorado)

A flowering plant of uncertain phylogenetic placement, described on the basis of fossil leaves; a new genus for "Celastrinites" artocarpidioides Lesquereux (1878).

Choffaticarpus[91]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (late Barremian-early Aptian)

Almargem Formation

 Portugal

A flowering plant of uncertain phylogenetic placement. Genus includes new species C. compactus.

Cratolirion[154]

Gen. et sp. nov

Valid

Coiffard, Kardjilov et Bernardes-de-Oliveira in Coiffard et al.

Early Cretaceous

Crato Formation

 Brazil

A crown monocot of uncertain phylogenetic placement. Genus includes new species C. bognerianum.

Dalembia (?) gracilis[155]

Sp. nov

Valid

Herman in Herman et al.

Late Cretaceous (Turonian-Coniacian)

Derevyannye Gory Formation

 Russia
( Sakha Republic)

A flowering plant described on the basis of fossil leaves.

Dictyozonia[91]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (late Barremian-early Aptian)

Almargem Formation

 Portugal

A non-eudicot flowering plant of uncertain affinity. Genus includes new species D. pusilla.

Dinisia[91]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (late Barremian-early Aptian)

Almargem Formation

 Portugal

A non-eudicot flowering plant of uncertain affinity. Genus includes new species D. portugallica.

Dispariflora[156]

Gen. et sp. nov

Valid

Poinar & Chambers

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A flowering plant of uncertain phylogenetic placement, possibly a relative of members of Laurales, especially Southern Hemisphere families allied with the Monimiaceae. Genus includes new species D. robertae.

Eckhartia[91]

Gen. et 3 sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (late Barremian-early Aptian)

Almargem Formation

 Portugal

A non-eudicot flowering plant of uncertain affinity. Genus includes new species E. brevicolumella, E. longicolumella and E. intermedia.

Eckhartianthus[91]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (late Barremian-early Aptian)

Almargem Formation

 Portugal

A non-eudicot flowering plant of uncertain affinity. Genus includes new species E. lusitanicus.

Eckhartiopsis[91]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (late Barremian-early Aptian)

Almargem Formation

 Portugal

A non-eudicot flowering plant of uncertain affinity. Genus includes new species E. parva.

Exalloanthum[157]

Nom. nov

Valid

Poinar

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A flowering plant of uncertain phylogenetic placement; a replacement name for Diaphoranthus Poinar (2018).

Gambierina askiniae[152]

Sp. nov

Valid

Smith et al.

Early Paleogene

Antarctica

An angiosperm pollen species.

Herendeenoxylon[158]

Gen. et sp. nov

Valid

Chin et al.

Late Cretaceous (Turonian)

Moreno Hill Formation

 United States
( New Mexico)

A flowering plant of uncertain phylogenetic placement (possibly a member of Ericales), described on the basis of fossil wood. Genus includes new species H. zuniense.

Ibrahimia[91]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (late Barremian-early Aptian)

Almargem Formation

 Portugal

An eudicot of uncertain phylogenetic placement, possibly related to Paisia. Genus includes new species I. vermiculata.

Juhaszia[91]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (late Barremian-early Aptian)

Almargem Formation

 Portugal

A non-eudicot flowering plant of uncertain affinity. Genus includes new species J. portugallica.

Kempia[91]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (late Barremian-early Aptian)

Almargem Formation

 Portugal

A non-eudicot flowering plant of uncertain affinity. Genus includes new species K. longicolpites.

Ladakhipollenites? densicolumellatus[24]

Sp. nov

Valid

D'Apolito et al.

Pliocene–Pleistocene

 Brazil

Fossil pollen of a flowering plant.

Ladakhipollenites? lolongatus[24]

Sp. nov

Valid

D'Apolito et al.

Pliocene–Pleistocene

 Brazil

Fossil pollen of Symmeria paniculata.

Ladakhipollenites? porolenticularis[24]

Sp. nov

Valid

D'Apolito et al.

Pliocene–Pleistocene

 Brazil

Fossil pollen of a flowering plant (possibly a member of the family Marcgraviaceae).

Lagokarpos tibetensis[159]

Sp. nov

Valid

Tang, Su & Zhou in Tang et al.

Paleogene

Niubao Formation

 China

A fossil fruit with unknown modern affinities.

Mcdougallia[91]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (late Barremian-early Aptian)

Almargem Formation

 Portugal

An eudicot of uncertain phylogenetic placement. Genus includes new species M. irregularis.

Nicholsia[91]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (late Barremian-early Aptian)

Almargem Formation

 Portugal

An eudicot of uncertain phylogenetic placement. Genus includes new species N. brevicolpites.

Piercipollis[91]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (late Barremian-early Aptian)

Almargem Formation

 Portugal

A non-eudicot flowering plant of uncertain affinity. Genus includes new species P. simplex.

Reyanthus[91]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (late Barremian-early Aptian)

Almargem Formation

 Portugal

A flowering plant of uncertain phylogenetic placement, possibly related to Magnoliales. Genus includes new species R. lusitanicus.

Rhoipites? basicus[24]

Sp. nov

Valid

D'Apolito et al.

Pliocene–Pleistocene

 Brazil

Fossil pollen of a flowering plant.

Rhoipites manausensis[24]

Sp. nov

Valid

D'Apolito et al.

Pliocene–Pleistocene

 Brazil

Fossil pollen of a member of the genus Schefflera.

Rhoipites minuticirculus[24]

Sp. nov

Valid

D'Apolito et al.

Pliocene–Pleistocene

 Brazil

Fossil pollen of a flowering plant.

Rhoipites negroensis[24]

Sp. nov

Valid

D'Apolito et al.

Pliocene–Pleistocene

 Brazil

Fossil pollen of a flowering plant.

Samylinaea[91]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (late Barremian-early Aptian)

Almargem Formation

 Portugal

An eudicot of uncertain phylogenetic placement. Genus includes new species S. punctata.

Sherwinoxylon[160]

Gen. et sp. nov

Valid

Boura & Saulnier in Boura et al.

Late Cretaceous (Cenomanian)

 France

A vesselless angiosperm fossil wood of uncertain affinity. Genus includes new species S. winteroides.

Strombothelya[161]

Gen. et 2 sp. nov

Valid

Poinar & Chambers

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A flowering plant of uncertain phylogenetic placement. Genus includes new species S. monostyla and S. grammogyna.

Teebacia[91]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (late Barremian-early Aptian)

Almargem Formation

 Portugal

A non-eudicot flowering plant of uncertain affinity. Genus includes new species T. hughesii.

Ubiquitoxylon[162]

Gen. et sp. nov

Valid

Wheeler in Wheeler, Brown & Koch

Late Paleocene

Denver Formation

 United States
( Colorado)

A dicotyledonous flowering plant of uncertain phylogenetic placement, described on the basis of fossil wood. Genus includes new species U. raynoldsii.

Vasunum[158]

Gen. et sp. nov

Valid

Chin et al.

Late Cretaceous (Turonian)

Moreno Hill Formation

 United States
( New Mexico)

A flowering plant of uncertain phylogenetic placement, described on the basis of fossil wood. Genus includes new species V. cretaceum.

Vedresia[91]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (late Barremian-early Aptian)

Almargem Formation

 Portugal

A flowering plant of uncertain phylogenetic placement, possibly related to Chloranthales. Genus includes new species V. elliptica.

Zygadelphus[163]

Gen. et sp. nov

Valid

Poinar & Chambers

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A flowering plant of uncertain phylogenetic placement, possibly a member of Laurales. Genus includes new species Z. aetheus.

Other plants

Name Novelty Status Authors Age Type locality Location Notes Images

Acetabularia moldavica[164]

Sp. nov

Valid

Barattolo, Ionesi & Ţibuleac

Middle Miocene

 Romania

A green alga belonging to the family Polyphysaceae, a species of Acetabularia.

Aloisalthella[165]

Gen. et comb. nov

Valid

Granier in Granier & Lethiers

Late Jurassic and Early Cretaceous (Berriasian)

 Algeria
 France
 Spain
 Ukraine
 United Arab Emirates

A green alga belonging to the family Polyphysaceae; a new genus for "Actinoporella" sulcata von Alth (1882).

Aneurospora posongchongensis[166]

Sp. nov

Valid

Cascales-Miñana et al.

Early Devonian

Posongchong Formation

 China

A spore taxon.

Auerbachichara tataouinensis[167]

Sp. nov

Valid

Tiss et al.

Middle Jurassic (Callovian)

Foum Tataouine Formation

 Tunisia

A green alga belonging to the group Charophyta.

Bakalovaella deloffrei[168]

Sp. nov

Valid

Granier & Bucur

Early Cretaceous (Hauterivian)

 France

A green alga belonging to the family Dasycladaceae.

Buthograptus gundersoni[169]

Sp. nov

Valid

LoDuca

Ordovician (Sandbian)

Platteville Formation

 United States
( Wisconsin)

A green alga belonging to the group Bryopsidales.

Buthograptus meyeri[169]

Sp. nov

Valid

LoDuca

Ordovician (Sandbian)

Platteville Formation

 United States
( Wisconsin)

A green alga belonging to the group Bryopsidales.

Calcipatera schoenlaubi[170]

Sp. nov

Valid

Vachard in Krainer, Vachard & Schaffhauser

Permian

 Austria
 Oman?
 United States?
( New Mexico)

A green alga belonging to the group Bryopsidales and the family Anchicodiaceae.

Callixylon wendtii[171]

Sp. nov

Valid

Tanrattana, Meyer-Berthaud & Decombeix

Devonian (Famennian)

 Morocco

An archaeopteridalean progymnosperm.

Cingulatisporites oligodistalis[24]

Sp. nov

Valid

D'Apolito et al.

Pliocene–Pleistocene

 Brazil

Fossil spore.

Concavissimisporites varzeanus[24]

Sp. nov

Valid

D'Apolito et al.

Pliocene–Pleistocene

 Brazil

Fossil spore.

Coniopteris moguqiensis[172]

Sp. nov

Valid

Zhang, Liu & Liang

Middle Jurassic

Wanbao Formation

 China

Dissocladella? chahtorshiana[173]

Sp. nov

Valid

Rashidi & Schlagintweit in Schlagintweit et al.

Paleocene

 Iran

A green alga belonging to the family Dasycladaceae.

Dissocladella compressa[174]

Sp. nov

Valid

Rashidi & Schlagintweit

Late Cretaceous (Maastrichtian)

Tarbur Formation

 Iran

A green alga belonging to the group Dasycladales.

Echinatisporis parviechinatus[24]

Sp. nov

Valid

D'Apolito et al.

Pliocene–Pleistocene

 Brazil

Fossil spore.

Echinosporis conicus[24]

Sp. nov

Valid

D'Apolito et al.

Pliocene–Pleistocene

 Brazil

Fossil spore.

Electrophycus[175]

Gen. et sp. nov

Valid

Poinar & Brown

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A green alga, possibly a member of the family Chaetophoraceae. Genus includes new species E. astroplethus. Announced in 2019; the final version of the article naming it was published in 2021.

Epiastopora[170]

Gen. et comb. nov

Valid

Vachard in Krainer, Vachard & Schaffhauser

Carboniferous (Pennsylvanian) and Permian

A green alga belonging to the group Dasycladales and the family Seletonellaceae. A new genus for "Epimastopora" alpina Kochansky & Herak (1960) and several other species formerly assigned to the genera Epimastopora and Pseudoepimastopora.

Jowingera[176]

Gen. et sp. nov

Valid

Bickner & Tomescu

Devonian (Emsian)

Battery Point Formation

 Canada
( Quebec)

An early euphyllophyte. Genus includes new species J. triloba.

Leonophyllum[177]

Gen. et sp. nov

Valid

Barbacka & Kustatscher in Barbacka et al.

Early Jurassic

 Hungary

A plant of uncertain phylogenetic placement, showing similarities to thalloid liverworts with raised vegetative bodies and to the fern family Hymenophyllaceae.
Genus includes new species L. tenellum.

Leptocentroxyla[176]

Gen. et sp. nov

Valid

Bickner & Tomescu

Devonian (Emsian)

Battery Point Formation

 Canada
( Quebec)

An early euphyllophyte. Genus includes new species L. tetrarcha.

Maiaspora[178]

Gen. et sp. nov

Valid

Mamontov et al.

Carboniferous (Viséan)

Moscow Syneclise

 Russia

A miospore. Genus includes new species M. panopta. Announced in 2019; the final version of the article naming it was published in 2021.

Ninsaria[179]

Gen. et sp. nov

Valid

Decombeix, Galtier, McLoughlin & Meyer-Berthaud in Decombeix et al.

Carboniferous (Viséan)

Rockhampton Group

 Australia

A vascular plant belonging to the group Lignophytia, of uncertain phylogenetic placement within the latter group. Genus includes new species N. australiana.

Palambages pariunta[180]

Sp. nov

Valid

Wainman et al.

Late Jurassic (late Kimmeridgian–early Tithonian)

Surat Basin

 Australia

A colonial alga belonging to the group Chlorophyta.

Patruliuspora[164]

Gen. et comb. nov

Valid

Barattolo, Ionesi & Ţibuleac

Late Triassic to Miocene

 Czech Republic
 France
 Slovakia

A green alga belonging to the family Polyphysaceae. Genus includes "Chalmasia" morelleti Pokorný (1948), "Halicoryne" carpatica Mišík (1987) and "Acicularia" valeti Segonzac (1970).

Porochara schudackii[167]

Sp. nov

Valid

Tiss et al.

Middle Jurassic (Bajocian)

Krachoua Formation

 Tunisia

A green alga belonging to the group Charophyta.

Pseudocymopolia acuta[181]

Sp. nov

Valid

Rashidi & Schlagintweit

Late Cretaceous (Maastrichtian)

Tarbur Formation

 Iran

A green alga belonging to the group Dasycladales and to the family Triploporellaceae.

Stenoloboxyla[176]

Gen. et sp. nov

Valid

Bickner & Tomescu

Devonian (Emsian)

Battery Point Formation

 Canada
( Quebec)

An early euphyllophyte. Genus includes new species S. ambigua.

Tainioxyla[176]

Gen. et sp. nov

Valid

Bickner & Tomescu

Devonian (Emsian)

Battery Point Formation

 Canada
( Quebec)

An early euphyllophyte. Genus includes new species T. quebecana.

Tichavekia[182]

Gen. et sp. nov

Valid

Pšenička, Sakala & Kraft in Kraft et al.

Late Silurian

Prague Basin

 Czech Republic

A large early land plant. Genus includes new species T. grandis.

Uteria naghanensis[183]

Sp. nov

Valid

Rashidi & Schlagintweit

Late Cretaceous (Maastrichtian)

Tarbur Formation

 Iran

A green alga belonging to the family Polyphysaceae.

Verrucatotriletes laesuraverrucatus[24]

Sp. nov

Valid

D'Apolito et al.

Pliocene–Pleistocene

 Brazil

Fossil spore.

Verrucatotriletes tortus[24]

Sp. nov

Valid

D'Apolito et al.

Pliocene–Pleistocene

 Brazil

Fossil spore.

General research

  • Description of fossils of filamentous green algae from the Early Devonian Rhynie chert (Scotland) is published by Wellman, Graham & Lewis (2019).[184]
  • Cretaceous alga Falsolikanella campanensis, originally assigned to the tribe Diploporeae within the green alga order Dasycladales, is transferred to the genus Actinoporella within the tribe Acetabularieae, family Polyphysaceae by Barattolo et al. (2019).[185]
  • A study on the impact of the Cretaceous–Paleogene extinction event on European charophytes is published by Vicente, Csiki-Sava & Martín-Closas (2019).[186]
  • The oldest known trilete spore assemblages reported so far are described from the Sandbian successions from Motala (central Sweden) by Rubinstein & Vajda (2019).[187]
  • A study on the composition and distribution of dispersed spore assemblages from Middle Devonian deposits of northern Spain , and on their implications for inferring the nature of the Kačák Event, is published by Askew & Wellman (2019).[188]
  • A study on the morphology of the spore taxon Lagenoisporites magnus from the Carboniferous (Tournaisian) Toregua Formation (Bolivia) is published by Quetglas, Macluf & di Pasquo (2019).[189]
  • A review of research concerning early evolution of land plants during the Ordovician is published by Servais et al. (2019).[190]
  • A study on carbon isotope data from stratigraphic sections at Germany Valley (West Virginia) and Union Furnace (Pennsylvania) in the Central Appalachian Basin, evaluating its implications for the knowledge of change in atmospheric oxygen levels during the late Ordovician and its possible relationship with early diversification of land plants, is published by Adiatma et al. (2019).[191]
  • A study on the stable carbon isotopic composition of 190 fossil specimens belonging to 12 genera of Devonian and Early Carboniferous land plants is published by Wan et al. (2019).[192]
  • A study on the early evolution of vascular plants is published by Cascales‐Miñana et al. (2019).[193]
  • A study on the evolution of early vascular plants is published by Crepet & Niklas (2019).[194]
  • A study on the fine‐scale structure and the chemistry of the tracheids of the earliest known woody plant Armoricaphyton chateaupannense is published by Strullu‐Derrien et al. (2019).[195]
  • A study on diversity and functions of lycopsid reproductive structures through time, based on data from extant and fossil taxa, is published by Bonacorsi & Leslie (2019).[196]
  • Redescription of the morphology of sterile and fertile structures of the Devonian lycopsid Kossoviella timanica is published by Orlova et al. (2019).[197]
  • A study on the ultrastructure of the spore wall in the Carboniferous lycopsid Oxroadia gracilis is published by Taylor (2019).[198]
  • A slab containing rooting systems which probably belonged to rhizomorphic lycopsids is reported from the Lower Permian Abo Formation (New Mexico, United States ) by Hetherington et al. (2019).[199]
  • A study on the anatomy and affinities of Cheirostrobus pettycurensis is published by Neregato & Hilton (2019), who report the discovery of spores conforming to the species Retusotriletes incohatus associated with fossils of Cheirostrobus, representing the first discovery of Retusotriletes-type spores reported in situ within sphenophytes.[200]
  • A study on the anatomy and affinities of silicified stems of Sphenophyllum from the Tournaisian deposits in the Montagne Noire region of France and in the Saalfeld area in Germany is published by Terreaux de Felice, Decombeix & Galtier (2019).[201]
  • Fossils assigned to the genus Equisetum are reported from a new fossil plant assemblage of late Eocene or early Oligocene age from central Queensland (Australia ) by Rozefelds et al. (2019), representing the first evidence of this genus from the Cenozoic of Australia and the most recent fossil record of this genus from Australia.[202]
  • A study on the evolutionary history of horsetails, based on genetic data and fossil record, is published by Clark, Puttick & Donoghue (2019), who report evidence indicative of two successive whole-genome duplication events occurring during the Carboniferous and Triassic rather than in association with the Cretaceous–Paleogene extinction event.[203]
  • A study aiming to determine links between volcanic activity in the Central Atlantic magmatic province, elevated concentrations of mercury in marine and terrestrial sediments and abnormalities of fossil fern spores across the Triassic-Jurassic boundary in southern Scandinavia and northern Germany is published by Lindström et al. (2019).[204]
  • A study on the fossil record of fern spores at the Cretaceous-Paleogene boundary, on the viability of fern spores, and on their implications for the knowledge of the duration of the impact winter at the Cretaceous-Paleogene boundary is published by Berry (2019).[205]
  • A study on the molecular structural characteristics of organic remains of a fern belonging to the family Osmundaceae from the Early Jurassic Korsaröd site in southern Sweden is published by Qu et al. (2019).[206]
  • A study on anatomy and growth of large specimens of the fossil fern species Weichselia reticulata from the Barremian La Huérguina Formation (Spain ) is published by Blanco-Moreno et al. (2019).[207]
  • A study on the morphological characters of 42 fossil species of Dicksoniaceae from China , and on their implications for the taxonomy of the fossil members of this group, is published by Xin et al. (2019).[208]
  • Fossil occurrences of members of the genus Christella are reported from the late Paleocene of Liuqu, southern Tibet and middle Miocene of the Jinggu Basin in western Yunnan (China ) by Xu et al. (2019), who transfer the species "Cyclosorus" nervosus Tao (1988) to the genus Christella.[209]
  • A study on the fossils of Glossopteris from the Permian succession of eastern India , aiming to identify the molecular signatures of solvent-extractable and non-extractable organic matter, will be published by Tewari et al. (2019).[210]
  • A study on the diversity trends of Glossopteris flora from the Barakar, Raniganj, and Panchet formations of Tatapani–Ramkola Coalfield (India ) is published by Saxena et al. (2019).[211]
  • A study on the architecture of the ovuliferous reproductive organs of Permian glossopterids is published by Mcloughlin & Prevec (2019).[212]
  • A study on the pinnule and stomatal morphology of extant and fossil members of the genera Bowenia and Eobowenia, and on its implications for the knowledge of adaptations of fossil plants to different environments, is published by Hill, Hill & Watling (2019).[213]
  • Seed of the ginkgoalean Yimaia capituliformis with damage interpreted as likely oviposition lesions inflicted by a kalligrammatid lacewing is described from the Middle Jurassic Jiulongshan Formation (China ) by Meng et al. (2019).[214]
  • A study on the phytogeographic history of ten conifer genera that are endemic to East Asia, based on fossil data from humid temperate forests in the Japanese Islands and Korean Peninsula, is published by Yabe et al. (2019).[215]
  • A study on the evolution of male and female cone sizes in members of the family Araucariaceae, as indicated by data from extant and fossil members of this family, is published by Gleiser et al. (2019).[216]
  • Five fossil foliage specimens of Calocedrus lantenoisi, representing one of the earliest records of the genus Calocedrus worldwide, are described from the Oligocene Shangcun Formation of the Maoming Basin (Guangdong Province, South China) by Wu et al. (2019).[217]
  • Leaves including cuticles and ovuliferous cones of members of the genus Metasequoia are described from the middle Miocene of Zhenyuan, Yunnan (Southwest China) by Wang et al. (2019), comprising the southernmost fossil record of this genus worldwide.[218]
  • A review of the fossil record of woods which might have affinities with Taxaceae, and a study on the palaeobiogeographical history of this family, is published by Philippe et al. (2019).[219]
  • Putative Cretaceous siliceous sponge Siphonia bovista is reinterpreted as an internal mould of the cone-like plant fossil Dammarites albens by Niebuhr (2019).[220]
  • A review of epidermal features of bennettites, comparing them with analogous features in living taxa and aiming to identify homologous character states, is published by Rudall & Bateman (2019).[221]
  • The first fossil record of a cycad seedling found in close association with a leaf flush of an adult cycad plant of the same species (Dioonopsis praespinulosa) is reported from the Palaeocene (Danian) Castle Rock flora in the Denver Basin (Colorado, United States ) by Erdei et al. (2019).[222]
  • A review of the paleobotanical evidence of the age and early history of the flowering plants is published by Coiro, Doyle & Hilton (2019).[223]
  • A study aiming to establish when the flowering plants originated is published by Li et al. (2019).[224]
  • Presence of endothelium (a specialized seed tissue that develops from the inner epidermis of the inner integument) is reported in several different kinds of flowering plant seeds (including in the lineage leading to extant Chloranthaceae) from the Early Cretaceous of eastern North America and Portugal by Friis, Crane & Pedersen (2019).[225]
  • A study on the phylogenetic relationships of palm fruit fossils from the Cretaceous–Paleogene (MaastrichtianDanian) Deccan Intertrappean Beds (India ) is published by Matsunaga et al. (2019), who interpret these fossils as representing a crown group member of palm subtribe Hyphaeninae (tribe Borasseae, subfamily Coryphoideae) related to extant genera Satranala and Bismarckia.[226]
  • Fossil fruits of members of the genera Fragaria and Rubus are reported from the Pliocene outcrops in the Heqing Basin (China ) by Huang et al. (2019).[227]
  • Description of alder leaf and infructescence fossils from the Upper Eocene Lawula Formation (Qinghai–Tibetan Plateau) is published by Xu, Su & Zhou (2019).[228]
  • A study on the morphology, paleoecology, historical biogeography and phylogenetic relationships of fossil pollen of members of Malvaceae belonging to the species Rhoipites guianensis and Malvacipolloides maristellae, and on its implications for inferring the impact of Cenozoic geological processes (including the uplift of the Andes) on members of Malvaceae living in northern South America, is published by Hoorn et al. (2019).[229]
  • A study aiming to determine the location of refugia of two North American species of hickories during the Last Glacial Maximum on the basis of genomic data is published by Bemmels, Knowles & Dick (2019).[230]
  • A study on functional leaf traits of the Eocene-Miocene taxa Rhodomyrtophyllum reticulosum (family Myrtaceae) and Platanus neptuni (family Platanaceae), evaluating whether leaf traits of these taxa reflect environmental conditions including climate, is published by Moraweck et al. (2019).[231]
  • A study on the morphology and phylogenetic relationships of Eocene fruits belonging to the species Mastixicarpum crassum and Eomastixia bilocularis is published by Manchester & Collinson (2019).[232]
  • Seeds of Eurya stigmosa are reported from the Early Pleistocene lacustrine and fluvial sediments of Porto da Cruz, Madeira by Góis-Marques et al. (2019).[233]
  • A study on the putative cycad "Zamia" australis from the Miocene Ñirihuau Formation (Argentina ) is published by Passalia, Caviglia & Vera (2019), who reinterpret the fossil specimens as flowering plant leaves, and transfer this species to the genus Lithraea.[234]
  • New method for reconstructing water transport properties of fossil wood is proposed by Tanrattana et al. (2019).[235]
  • Signatures of Devonian (Famennian) forests and soils preserved in black shales in the southernmost Appalachian Basin (Chattanooga Shale; Alabama, United States ) are presented by Lu et al. (2019).[236]
  • A study on reproductive structures of Devonian plants and on their implications for the knowledge of large-scale patterns of reproductive evolution over the Devonian is published by Bonacorsi & Leslie (2019).[237]
  • Revision of a fossil plant assemblage from the Carboniferous site in San Juan Province, Argentina known as Retamito or Río del Agua is published by Correa & Césari (2019).[238]
  • A study on the stratigraphic ranges and diversities of plant taxa from the upper Permian (Lopingian) to the Middle Triassic is published by Nowak, Schneebeli-Hermann & Kustatscher (2019), who interpret their findings as indicating that the extinction of land plants during the Permian–Triassic extinction event was much less severe than previously thought.[239]
  • A study on the timing of the collapse of the Permian Glossopteris flora from the Sydney Basin (Australia ) is published by Fielding et al. (2019).[240]
  • New fossil flora dominated by cuticles of Dicroidium is reported from the Middle Triassic (Anisian) Mukheiris Formation (Jordan) by Abu Hamad et al. (2019).[241]
  • A study on changes of land vegetation resulting from the Toarcian oceanic anoxic event is published by Slater et al. (2019).[242]
  • Plant disseminules are documented from four Middle Jurassic to Lower Cretaceous lacustrine Lagerstätten in China and Australia by McLoughlin & Pott (2019).[243]
  • A study comparing the Jurassic floras of the Ayuquila Basin and the Otlaltepec Basin (Mexico) and evaluating their implications for the knowledge of the Jurassic environments of these basins is published by Velasco-de León et al. (2019).[244]
  • A study on phototropism in extant trees from Beijing and Jilin Provinces and fossil tree trunks from the Jurassic Tiaojishan and Tuchengzi formations in Liaoning and Beijing regions (China ), and on its implications for inferring the history of the rotation of the North China Block, is published by Jiang et al. (2019).[245]
  • A study on the link between climatic changes and changes plant distribution in South America during the Early Cretaceous, as indicated by palynological data from the Aptian of the Sergipe Basin (Brazil ), is published by Carvalho et al. (2019).[246]
  • A study on the frequency and diversity of damage types caused by insect oviposition in plants from the Upper Triassic Yangcaogou Formation, Middle Jurassic Jiulongshan Formation and Lower Cretaceous Yixian Formation (China ), assessing the degree of plant host specificity, is published by Lin et al. (2019).[247]
  • A study on the plant specimens (ferns, gymnosperms and angiosperms) from the Lower Cretaceous Araripe Basin (Brazil ) preserving evidence of plant–insect interactions and potentially of paleoecological relationships between plants and insects is published by Edilson Bezerra dos Santos Filho et al. (2019).[248]
  • Leaves of members of the family Nymphaeaceae preserving evidence of insect herbivory are reported from the Albian Utrillas Formation (Spain ) by Estévez-Gallardo et al. (2019).[249]
  • A study on Cenomanian plants from the Redmond no.1 mine near Schefferville (Redmond Formation; Labrador Peninsula, Canada ) and on their implications for the knowledge of paleoclimate of this site is published by Demers‐Potvin & Larsson (2019).[250]
  • A study on the canopy structure of Late Cretaceous and Paleocene forests in South America, as indicated by the carbon isotope composition of fossil angiosperm leaves from two localities in the Paleocene Cerrejón Formation and one locality in the Maastrichtian Guaduas Formation (Colombia), is published by Graham et al. (2019).[251]
  • A quantitative analysis of an earliest Paleocene megaflora from the Ojo Alamo Sandstone in the San Juan Basin (New Mexico, United States ) is published by Flynn & Peppe (2019).[252]
  • A study on the evolution of plant assemblages in the area of Primorye (Russia ) throughout the Paleogene is published by Bondarenko, Blokhina & Utescher (2019).[253]
  • A study on changes in plant and insect communities across the PaleoceneEocene boundary within the Hanna Basin (Wyoming, United States ) is published by Azevedo Schmidt et al. (2019).[254]
  • A study on stomata of fossil specimens of members of the family Lauraceae from the Eocene of Australia and New Zealand, evaluating their implications for reconstructions of Eocene pCO2 levels, is published by Steinthorsdottir et al. (2019).[255]
  • Description of early Eocene leaf fossils from the Dinmore locality (Redbank Plains Formation, Booval Basin; Australia) and a study on the implications of these fossils for reconstructions of paleoclimate is published by Pole (2019).[256]
  • A study on changes of plant communities from the Herren beds (Oregon, United States ) during the Eocene and on the implications of plant fossils from this area for the reconstruction of Eocene climate is published by Jijina, Currano & Constenius (2019).[257]
  • Su et al. (2019) use radiometrically dated plant fossil assemblages to quantify when southeastern Tibet achieved its present elevation, and what kind of floras existed there at that time.[258]
  • Description of a plant megafossil assemblage from the Kailas Formation in western part of the southern Lhasa terrane, and a study on its implications for inferring the elevation history of the southern Tibetan Plateau, is published by Ai et al. (2019).[259]
  • A study on the dynamics and evolution of the flora of Turgai ecological type in Western Siberia during the early Oligocene to earliest Miocene is published by Popova et al. (2019).[260]
  • A study on the paleoclimate, vegetational type and ecological strategies adopted by fossil plants from the Oligocene Baigang Formation (China ), as indicated by characteristics of fossil leaves from this formation, is published by Li et al. (2019).[261]
  • Description of a fossil plant assemblage from the Miocene Hattiesburg Formation (Mississippi, United States ) is published by McNair et al. (2019).[262]
  • A study on changes of C4 vegetation composition in southwestern Montana (United States ) from the late Miocene through present is published by Hyland et al. (2019).[263]
  • A study aiming to test the hypothesis that fire contributed to the rise of C3-dominated grasslands in Eurasia, based on data from core retrieved from the late Miocene to Pleistocene sediments from the Black Sea, is published by Feurdean & Vasiliev (2019).[264]
  • A study on the origin of the African C4 savannah grasslands is published by Polissar et al. (2019).[265]
  • A study on vegetation changes in west African tropical montane forest over the past 90,000 years, as indicated by pollen data from the Lake Bambili site (Cameroon), is published by Lézine et al. (2019).[266]
  • A study on changes of vegetation in southern Borneo over the past 40,000  calibrated years BP, as indicated by data from Saleh Cave (South Kalimantan, Indonesia), is published by Wurster et al. (2019).[267]
  • A study on the role of past climate, extinct megafauna and guanaco in shaping the vegetation of the Patagonian steppe is published by Hernández, Ríos & Perotto-Baldivieso (2019).[268]
  • The discovery of ancient chestnut, hazelnut and flax DNA recovered from stalagmites from the Solkota cave (Georgia) is reported by Stahlschmidt et al. (2019).[269]
  • The discovery of oldest fossil trees, dating back 386 million years, in the Catskill region near Cairo, New York, is published online by Stein et al. (2019).[270]

References

  1. Alexander C. Bippus; Adolfina Savoretti; Ignacio H. Escapa; Juan Garcia-Massini; Diego Guido (2019). "Heinrichsiella patagonica gen. et sp. nov.: a permineralized acrocarpous moss from the Jurassic of Patagonia". International Journal of Plant Sciences 180 (8): 882–891. doi:10.1086/704832. 
  2. 2.0 2.1 2.2 Yuriy S. Mamontov; Michael S. Ignatov (2019). "How to rely on the unreliable: examples from Mesozoic bryophytes of Transbaikalia". Journal of Systematics and Evolution 57 (4): 339–360. doi:10.1111/jse.12483. 
  3. 3.0 3.1 3.2 Patricio Emmanuel Santamarina; Viviana Dora Barreda; Ari Iglesias; Augusto Nicolás Varela (2019). "Palynology from the Cenomanian Mata Amarilla Formation, southern Patagonia, Argentina". Cretaceous Research 109: Article 104354. doi:10.1016/j.cretres.2019.104354. 
  4. Michael S. Ignatov; Paul Lamkowski; Elena A. Ignatova; Evgeny E. Perkovsky (2019). "Mosses from Rovno amber (Ukraine), 4. Sphagnum heinrichsii, a new moss species from Eocene". Arctoa: A Journal of Bryology 28 (1): 1–11. doi:10.15298/arctoa.28.01. 
  5. Ruiyun Li; Xiaoqiang Li; Hongshan Wang; Bainian Sun (2019). "Ricciopsis sandaolingensis sp. nov., a new fossil bryophyte from the Middle Jurassic Xishanyao Formation in the Turpan-Hami Basin, Xinjiang, Northwest China". Palaeontologia Electronica 22 (2): Article number 22.2.42. doi:10.26879/917. 
  6. Jun-you Wang; Tao Li; Zhi-ping Liu; Bin Guo; Ai Kang; Yu-ling Na; Yun-feng Li; Jun-chen Bo et al. (2019). "New discovery of Late Triassic liverworts from Yangcaogou, Beipiao, Liaoning, China". Global Geology 38 (1): 1–10. doi:10.3969/j.issn.1004-5589.2019.01.001. http://sjdz.jlu.edu.cn/EN/abstract/abstract9474.shtml. 
  7. Josef Pšenička; Ronny Rößler; Jana Frojdová; Stanislav Opluštil; Mathias Merbitz (2019). "A new anatomically preserved Alloiopteris fern from Moscovian (Bolsovian) volcanoclastics of Flöha (Flöha Basin, SE Germany)". PalZ 93 (3): 395–407. doi:10.1007/s12542-019-00482-x. 
  8. Pedro Correia; Zbynĕk Šimůnek; Christopher J. Cleal; Bruno Vallois; Rúben Domingos; Artur A. Sa (2019). "On a new species of the calamitalean fossil-genus Annularia from the Douro Basin (lower Gzhelian; NW Portugal)". Historical Biology: An International Journal of Paleobiology 33 (2): 258–267. doi:10.1080/08912963.2019.1613391. 
  9. Elizabeth J. Hermsen; Nathan A. Jud; Facundo De Benedetti; Maria A. Gandolfo (2019). "Azolla sporophytes and spores from the Late Cretaceous and Paleocene of Patagonia, Argentina". International Journal of Plant Sciences 180 (7): 737–754. doi:10.1086/704377. 
  10. Eva‐Maria Sadowski; Leyla J. Seyfullah; Ledis Regalado; Laura E. Skadell; Alexander Gehler; Carsten Gröhn; Christel Hoffeins; Hans Werner Hoffeins et al. (2019). "How diverse were ferns in the Baltic amber forest?". Journal of Systematics and Evolution 57 (4): 305–328. doi:10.1111/jse.12501. 
  11. 11.0 11.1 11.2 11.3 11.4 Alexander B. Doweld (2019). "On the nomenclature of the fossil‐genera Acitheca, Bifariusotheca, Polymorphopteris and Strephopteris (fossil Pteridophyta, Marattiopsida)". Taxon 68 (5): 1101–1111. doi:10.1002/tax.12118. https://www.researchgate.net/publication/337141707. 
  12. Fankai Sun; Conghui Xiong; Zixi Wang; Xuelian Wang; Bainian Sun (2019). "Discovery of several Sphenophyllum from Cisuralian in Yongchang, Gansu and its paleogeographical significance". Acta Palaeontologica Sinica 58 (2): 202–215. http://gswxb.cnjournals.cn/ch/reader/view_abstract.aspx?file_no=20190206&flag=1. 
  13. Fankai Sun; Conghui Xiong; Zixi Wang; Jidong Wang; Mingxuan Sun; Xuelian Wang; Bainian Sun (2019). "A new species of Cyathocarpus with in situ spores from the lower Permian of Gansu, northwestern China". Historical Biology: An International Journal of Paleobiology 31 (7): 824–835. doi:10.1080/08912963.2017.1396321. 
  14. Kolby R. Lundgren; N. Ruben Cúneo; Ignacio H. Escapa; Alexandru M.F. Tomescu (2019). "A new marattialean fern from the Lower Permian of Patagonia (Argentina) with cautionary tales on synangial morphology and pinnule base characters". International Journal of Plant Sciences 180 (7): 667–680. doi:10.1086/704357. 
  15. Carmen Álvarez-Vázquez (2019). "Filicopsida from the lower Westphalian (Middle Pennsylvanian) of Nova Scotia and New Brunswick, Maritime Provinces, Canada". Atlantic Geology 55: 1–55. doi:10.4138/atlgeol.2019.001. ISSN 1718-7885. 
  16. L.B. Golovneva; A.A. Grabovskiy (2019). "The genus Hausmannia (Dipteridaceae) in the Cretaceous of the North-East of Russia and its paleobiogeographic implications". Cretaceous Research 93: 22–32. doi:10.1016/j.cretres.2018.09.001. Bibcode2019CrRes..93...22G. 
  17. Ledis Regalado; Alexander R. Schmidt; Patrick Müller; Lisa Niedermeier; Michael Krings; Harald Schneider (2019). "Heinrichsia cheilanthoides gen. et sp. nov., a fossil fern in the family Pteridaceae (Polypodiales) from the Cretaceous amber forests of Myanmar". Journal of Systematics and Evolution 57 (4): 329–338. doi:10.1111/jse.12514. 
  18. Elizabeth J. Hermsen (2019). "Revisions to the fossil sporophyte record of Marsilea". Acta Palaeobotanica 59 (1): 27–50. doi:10.2478/acpa-2019-0005. 
  19. Junyou Wang; Tao Li; Zhiping Liu; Bin Guo; Ai Kang; Yuling Na; Yunfeng Li; Hongshan Wag et al. (2019). "A new member of Sphenopsida, Neolobatannularia gen. nov. from Late Triassic of western Liaoning, China". Global Geology (English Edition) 22 (1): 1–8. doi:10.3969/j.issn.1673-9736.2019.01.01. http://sjdz.jlu.edu.cn/Jwk_sjdz_en/EN/abstract/abstract8693.shtml. 
  20. N. V. Bazhenova; A. V. Bazhenov (2019). "Stems of a new osmundaceous fern from the Middle Jurassic of Kursk Region, European Russia". Paleontological Journal 53 (5): 540–550. doi:10.1134/S0031030119050034. https://elibrary.ru/item.asp?id=39324161. 
  21. Uwe Kaulfuss; John G. Conran; Jennifer M. Bannister; Dallas C. Mildenhall; Daphne E. Lee (2019). "A new Miocene fern (Palaeosorum: Polypodiaceae) from New Zealand bearing in situ spores of Polypodiisporites". New Zealand Journal of Botany 57 (1): 2–17. doi:10.1080/0028825X.2018.1560336. 
  22. Maria Barbacka; Evelyn Kustatscher; Emese R. Bodor (2019). "Ferns of the Lower Jurassic from the Mecsek Mountains (Hungary): taxonomy and palaeoecology". PalZ 93 (1): 151–185. doi:10.1007/s12542-018-0430-8. 
  23. Ye‐Ming Cheng; Feng‐Xiang Liu; Ning Tian; Yue‐Gao Jin; Tong‐Xing Sun (2019). "A new Cretaceous species of Plenasium from China Plenasium xiei sp. nov. from the Cretaceous of Northeast China: additional evidence for the longevity of osmundaceous ferns". Journal of Systematics and Evolution 59 (2): 375–387. doi:10.1111/jse.12532. 
  24. 24.00 24.01 24.02 24.03 24.04 24.05 24.06 24.07 24.08 24.09 24.10 24.11 24.12 24.13 24.14 24.15 24.16 24.17 Carlos D'Apolito; Silane A. F. da Silva-Caminha; Carlos Jaramillo; Rodolfo Dino; Emílio A. A. Soares (2019). "The Pliocene–Pleistocene palynology of the Negro River, Brazil". Palynology 43 (2): 223–243. doi:10.1080/01916122.2018.1437090. Bibcode2019Paly...43..223D. https://www.researchgate.net/publication/324875916. 
  25. Cyrille Prestianni; Robert W. Gess (2019). "Rinistachya hilleri gen. et sp. nov. (Sphenophyllales), from the upper Devonian of South Africa". Organisms Diversity & Evolution 19 (1): 1–11. doi:10.1007/s13127-018-0385-3. https://orbi.uliege.be/bitstream/2268/295480/1/Prestianni%20and%20Gess%202019%20Rinistachya.pdf. 
  26. Xiao-Yuan He; Shi-Jun Wang; Jun Wang; Jason Hilton (2019). "The anatomically preserved tripinnate frond Rothwellopteris pecopteroides gen. et sp. nov. from the latest Permian of South China: timing the stem to crown group transition in Marattiales". International Journal of Plant Sciences 180 (8): 869–881. doi:10.1086/704946. https://research.birmingham.ac.uk/portal/en/publications/the-anatomically-preserved-tripinnate-frond-rothwellopteris-marginata-gen-et-comb-nov-from-the-latest-permian-of-south-china(1900870b-c3fd-4f05-a555-c4d580fe56ad).html. 
  27. Dan-Dan Li; Jun Wang; Shan Wan; Josef Pšenička; Wei-Ming Zhou; Jiří Bek; Jana Votočková-Frojdová (2019). "A marattialean fern, Scolecopteris libera n. sp., from the Asselian (Permian) of Inner Mongolia, China". Palaeoworld 28 (4): 487–507. doi:10.1016/j.palwor.2019.05.002. 
  28. Xiao-Yuan He; Shi-Jun Wang (2019). "A new anatomically preserved osmundalean stem Tiania resinus sp. nov. from the Lopingian (upper Permian) of eastern Yunnan, China". Review of Palaeobotany and Palynology 262: 52–59. doi:10.1016/j.revpalbo.2018.12.004. Bibcode2019RPaPa.262...52H. 
  29. Ru Feng; Ashalata D’Rozario; Jian-Wei Zhang (2019). "A new Bergeria (Flemingitaceae) from the Mississippian of Xinjiang, NW China and its evolutionary implications". Journal of Palaeogeography 8 (1): Article 4. doi:10.1186/s42501-018-0020-4. Bibcode2019JPalG...8....4F. 
  30. Deming Wang; Min Qin; Le Liu; Lu Liu; Yi Zhou; Yingying Zhang; Pu Huang; Jinzhuang Xue et al. (2019). "The most extensive Devonian fossil forest with small lycopsid trees bearing the earliest stigmarian roots". Current Biology 29 (16): 2604–2615.e2. doi:10.1016/j.cub.2019.06.053. PMID 31402300. 
  31. Stanislav Opluštil; Josef Pšenička; Jiří Bek (2019). "Omphalophloios wagneri sp. nov., a new sub-arborescent lycopsid from the middle Moscovian (Middle Pennsylvanian) of the Illinois Basin, USA". Review of Palaeobotany and Palynology 271: Article 104105. doi:10.1016/j.revpalbo.2019.104105. Bibcode2019RPaPa.27104105O. 
  32. Christopher M. Berry; Patricia G. Gensel (2019). "Late Mid Devonian Sawdonia (Zosterophyllopsida) from Venezuela". International Journal of Plant Sciences 180 (6): 540–557. doi:10.1086/702940. https://orca.cardiff.ac.uk/119354/1/Berry%20gensel%202019%20orca.pdf. 
  33. 33.0 33.1 33.2 33.3 César Ríos-Santos; Sergio R. S. Cevallos-Ferriz (2019). "Upper Jurassic, Upper Cretaceous and Palaeocene conifer woods from Mexico". Earth and Environmental Science Transactions of the Royal Society of Edinburgh 108 (4): 399–418. doi:10.1017/S1755691018000245. 
  34. Gee, C.; Sprinkel, D.; Bennis, M. B.; Gray, D. (2019). "Silicified logs of Agathoxylon hoodii (Tidwell et Medlyn) comb. nov. from Rainbow Draw, near Dinosaur National Monument, Uintah County, Utah, USA, and their implications for araucariaceous conifer forests in the Upper Jurassic Morrison Formation.". Geology of the Intermountain West 6: 77–92. doi:10.31711/giw.v6.pp77-92. 
  35. Tidwell, W.D.; Medlyn, D.A. (1993). "Conifer wood from the Upper Jurassic of Utah, Part II—Araucarioxylon hoodii sp. nov.". The Palaeobotanist 42: 1–7. 
  36. Chopparapu Chinnappa; Annamraju Rajanikanth; Kavali Pauline Sabina (2019). "Palaeofloras from the Kota Formation, India: palaeodiversity and ecological implications". Volumina Jurassica in press. https://voluminajurassica.org/resources/html/article/details?id=186193. Retrieved 2019-02-16. 
  37. 37.0 37.1 37.2 Robert S. Hill; Gregory J. Jordan; Raymond J. Carpenter; Rosemary Paull (2019). "Araucaria section Eutacta macrofossils from the Cenozoic of southeastern Australia". International Journal of Plant Sciences 180 (8): 902–921. doi:10.1086/704829. https://eprints.utas.edu.au/46644/3/150462%20-%20Araucaria%20section%20Eutacta%20macrofossils%20from%20the%20Cenozoic%20of%20Southeastern%20Australia.pdf. 
  38. Jiří Kvaček; Ismail Omer Yilmaz; Izzet Hosgor; Mário Miguel Mendes (2019). "New araucarian conifer from the Late Cretaceous (Campanian-Maastrichtian) of southeastern Turkey". International Journal of Plant Sciences 180 (6): 597–606. doi:10.1086/703525. 
  39. Martin A. Carrizo; Maiten A. Lafuente Diaz; Georgina M. Del Fueyo; Gaëtan Guignard (2019). "Cuticle ultrastructure in Brachyphyllum garciarum sp. nov (Lower Cretaceous, Argentina) reveals its araucarian affinity". Review of Palaeobotany and Palynology 269: 104–128. doi:10.1016/j.revpalbo.2019.06.014. Bibcode2019RPaPa.269..104C. 
  40. Cristina I. Nunes; Josefina Bodnar; Ignacio H. Escapa; María A. Gandolfo; N. Rubén Cúneo (2019). "A new cupressaceous wood from the Lower Cretaceous of Central Patagonia reveals possible clonal growth habit". Cretaceous Research 99: 133–148. doi:10.1016/j.cretres.2019.02.013. Bibcode2019CrRes..99..133N. 
  41. Dori L. Contreras; Ignacio H. Escapa; Rocio C. Iribarren; N. Rubén Cúneo (2019). "Reconstructing the early evolution of the Cupressaceae: a whole-plant description of a new Austrohamia species from the Cañadón Asfalto Formation (Early Jurassic), Argentina". International Journal of Plant Sciences 180 (8): 834–868. doi:10.1086/704831. 
  42. Rosemary Paull; Robert S. Hill; Gregory J. Jordan; J.M. Kale Sniderman (2019). "Mid Miocene–Last Interglacial Callitris (Cupressaceae) from south-eastern Australia". Review of Palaeobotany and Palynology 263: 1–11. doi:10.1016/j.revpalbo.2019.01.005. Bibcode2019RPaPa.263....1P. 
  43. 43.0 43.1 Ünal Akkemik (2019). "New fossil wood descriptions from Pliocene of central Anatolia and presence of Taxodioxylon in Turkey from Oligocene to Pliocene". Turkish Journal of Earth Sciences 28 (3): 398–409. doi:10.3906/yer-1805-24. 
  44. Yi-Ming Cui; Wei Wang; David K. Ferguson; Jian Yang; Yu-Fei Wang (2019). "Fossil evidence reveals how plants responded to cooling during the Cretaceous-Paleogene transition". BMC Plant Biology 19 (1): Article number 402. doi:10.1186/s12870-019-1980-y. PMID 31519148. 
  45. C. H. Chinnappa; P. S. Kavali; A. Rajanikanth (2019). "Protaxodioxylon from the Late Jurassic to Early Cretaceous Kota Formation, Pranhita-Godavari Basin, India". Paleontological Journal 53 (11): 1206–1215. doi:10.1134/S0031030119110029. 
  46. Chris Mays; David J. Cantrill (2019). "Protodammara reimatamoriori, a new species of conifer (Cupressaceae) from the Upper Cretaceous Tupuangi Formation, Chatham Islands, Zealandia". Alcheringa: An Australasian Journal of Palaeontology 43 (1): 114–126. doi:10.1080/03115518.2017.1417478. Bibcode2019Alch...43..114M. http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-2743. 
  47. 47.0 47.1 L. B. Golovneva (2019). "The Chingandzha flora of the Okhotsk-Chukotka volcanic belt". Paleobotanika 10: 13–179. doi:10.31111/palaeobotany/2019.10.13. 
  48. Sergio R.S. Cevallos-Ferriz; César Ríos-Santos; Socorro Lozano-García (2019). "Abies cuitlahuacii sp. nov., a mummified late Quaternary fossil wood from Chalco, Mexico". Boletín de la Sociedad Geológica Mexicana 71 (1): 193–206. doi:10.18268/BSGM2019v71n1a10. http://boletinsgm.igeolcu.unam.mx/bsgm/vols/epoca04/7101/%2810%29Cevallos.pdf. 
  49. Peng-Cheng An; De-Liang Tang; Hui Chen; Qian Yang; Su-Ting Ding; Jing-Yu Wu (2019). "Pliocene white pine (Pinus subgenus Strobus) needles from western Yunnan, southwestern China". Historical Biology: An International Journal of Paleobiology 31 (10): 1412–1422. doi:10.1080/08912963.2018.1461216. 
  50. Dimitra Mantzouka; Jakub Sakala; Zlatko Kvaček; Efterpi Koskeridou; Chryssanthi Ioakim (2019). "Two fossil conifer species from the Neogene of Alonissos Island (Iliodroma, Greece)". Geodiversitas 41 (3): 125–142. doi:10.5252/geodiversitas2019v41a3. http://sciencepress.mnhn.fr/en/periodiques/geodiversitas/41/3. 
  51. Ksenia V. Domogatskaya; Alexei B. Herman (2019). "New species of the genus Schizolepidopsis (conifers) from the Albian of the Russian high Arctic and geological history of the genus". Cretaceous Research 97: 73–93. doi:10.1016/j.cretres.2019.01.012. Bibcode2019CrRes..97...73D. 
  52. Xin‐Kai Wu; Natalia E. Zavialova; Tatiana M. Kodrul; Xiao‐Yan Liu; Natalia V. Gordenko; Natalia P. Maslova; Cheng Quan; Jian‐Hua Jin (2019). "Northern Hemisphere megafossil of Dacrycarpus (Podocarpaceae) from Miocene of South China and its evolutionary and palaeoecological implication". Journal of Systematics and Evolution 59 (2): 352–374. doi:10.1111/jse.12534. 
  53. Ana Andruchow-Colombo; Ignacio H. Escapa; Raymond J. Carpenter; Robert S. Hill; Ari Iglesias; Ana M. Abarzua; Peter Wilf (2019). "Oldest record of the scale-leaved clade of Podocarpaceae, early Paleocene of Patagonia, Argentina". Alcheringa: An Australasian Journal of Palaeontology 43 (1): 127–145. doi:10.1080/03115518.2018.1517222. Bibcode2019Alch...43..127A. 
  54. Hui Chen; De-Liang Tang; Yu Zhang; Peng-Cheng An; Xin-Yu Yan; Su-Ting Ding; Jing-Yu Wu (2019). "Fossil Podocarpus (Podocarpaceae) from the lower Pliocene of Tengchong, Yunnan Province, China and its biogeographic significance". Historical Biology: An International Journal of Paleobiology 33 (9): 1–10. doi:10.1080/08912963.2019.1697254. 
  55. Jian-Wei Zhang; Ashalata D’Rozario; Xiao-Qing Liang; Zhe-Kun Zhou (2019). "Middle Miocene Cephalotaxus (Taxaceae) from Yunnan, Southwest China, and its implications to taxonomy and evolution of the genus". Palaeoworld 28 (3): 381–402. doi:10.1016/j.palwor.2019.01.002. 
  56. Abel Barral; Bernard Gomez; Véronique Daviero-Gomez; Christophe Lécuyer; Mário Miguel Mendes; Timothy A.M. Ewin (2019). "New insights into the morphology and taxonomy of the Cretaceous conifer Frenelopsis based on a new species from the Albian of San Just, Teruel, Spain". Cretaceous Research 95: 21–36. doi:10.1016/j.cretres.2018.11.004. Bibcode2019CrRes..95...21B. 
  57. Hai-Bo Wei; Xu-Dong Gou; Ji-Yuan Yang; Zhuo Feng (2019). "Fungi–plant–arthropods interactions in a new conifer wood from the uppermost Permian of China reveal complex ecological relationships and trophic networks". Review of Palaeobotany and Palynology 271: Article 104100. doi:10.1016/j.revpalbo.2019.07.005. Bibcode2019RPaPa.27104100W. 
  58. Gustavo Correa; Josefina Bodnar; Carina Colombi; Paula Santi Malnis; Angel Praderio; Ricardo Martínez; Cecilia Apaldetti; Eliana Fernández et al. (2019). "Systematics and taphonomy of fossil woods from a new locality in the Upper Triassic Carrizal Formation of the El Gigantillo area (Marayes-El Carrizal Basin), San Juan, Argentina". Journal of South American Earth Sciences 90: 94–106. doi:10.1016/j.jsames.2018.11.027. Bibcode2019JSAES..90...94C. 
  59. Mingli Wan; Wan Yang; Jun Wang (2019). "Amyelon bogdense sp. nov., a silicified gymnospermous root from the Changhsingian–Induan (?) in southern Bogda Mountains, northwestern China". Review of Palaeobotany and Palynology 263: 12–27. doi:10.1016/j.revpalbo.2019.01.004. Bibcode2019RPaPa.263...12W. 
  60. 60.0 60.1 60.2 60.3 60.4 Else Marie Friis; Peter R. Crane; Kaj Raunsgaard Pedersen (2019). "Chlamydospermous seeds document the diversity and abundance of extinct gnetalean relatives in Early Cretaceous vegetation". International Journal of Plant Sciences 180 (7): 643–666. doi:10.1086/704356. 
  61. 61.0 61.1 Heidi M. Anderson; Maria K. Barbacka; Marion K. Bamford; W. B. Keith Holmes; John M. Anderson (2019). "Umkomasia (megasporophyll): part 1 of a reassessment of Gondwana Triassic plant genera and a reclassification of some previously attributed". Alcheringa: An Australasian Journal of Palaeontology 43 (1): 43–70. doi:10.1080/03115518.2018.1554748. Bibcode2019Alch...43...43A. 
  62. Robert S. Hill; Kathryn E. Hill; Raymond J. Carpenter; Gregory J. Jordan (2019). "New macrofossils of the Australian cycad Bowenia and their significance in reconstructing the past morphological range of the genus". International Journal of Plant Sciences 180 (2): 128–140. doi:10.1086/701103. https://eprints.utas.edu.au/30354/1/132395%20-%20New%20macrofossils%20of%20the%20Australian%20cycad%20bowenia.pdf. 
  63. Evelyn Kustatscher; Henk Visscher; Johanna H. A. van Konijnenburg-van Cittert (2019). "Did the Czekanowskiales already exist in the late Permian?". PalZ 93 (3): 465–477. doi:10.1007/s12542-019-00468-9. 
  64. 64.0 64.1 64.2 64.3 64.4 Zbyněk Šimůnek (2019). "The earliest evidence of cordaitalean cuticles from coal in the Pennsylvanian of Europe (Langsettian, Upper Silesian Basin, Czech Republic)". Review of Palaeobotany and Palynology 261: 81–94. doi:10.1016/j.revpalbo.2018.11.007. Bibcode2019RPaPa.261...81S. 
  65. Patrick Blomenkemper; Abdalla Abu Hamad; Benjamin Bomfleur (2019). "Cryptokerpia sarlaccophora gen. et sp. nov., an enigmatic plant fossil from the Late Permian Umm Irna Formation of Jordan". PalZ 93 (3): 479–485. doi:10.1007/s12542-019-00466-x. 
  66. Pedro Correia; Zbynĕk Šimůnek; Christopher J. Cleal; Artur A. Sá (2019). "Douropteris alvarezii gen. nov., sp. nov., a new medullosalean pteridosperm from the Late Pennsylvanian of Portugal". Geological Journal 54 (3): 1567–1577. doi:10.1002/gj.3251. 
  67. Else Marie Friis; Peter R. Crane; Kaj Raunsgaard Pedersen (2019). "Geminispermum, an Early Cretaceous (early–middle Albian) cupulate unit from the angiosperm-dominated Puddledock flora of eastern North America". Acta Palaeobotanica 59 (2): 229–239. doi:10.2478/acpa-2019-0020. 
  68. 68.0 68.1 Stephen McLoughlin; Anton Maksimenko; Chris Mays (2019). "A new high-paleolatitude Late Permian permineralized peat flora from the Sydney Basin, Australia". International Journal of Plant Sciences 180 (6): 513–539. doi:10.1086/702939. http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-3427. 
  69. Andrew C. Scott; Jason Hilton; Jean Galtier; Marco Stampanoni (2019). "A charcoalified ovule adapted for wind dispersal and deterring herbivory from the late Viséan (Carboniferous) of Scotland". International Journal of Plant Sciences 180 (9): 1059–1074. doi:10.1086/705590. http://pure-oai.bham.ac.uk/ws/files/81071613/705590.pdf. 
  70. Ana Andruchow-Colombo; Peter Wilf; Ignacio H. Escapa (2019). "A South American fossil relative of Phyllocladus: Huncocladus laubenfelsii gen. et sp. nov. (Podocarpaceae), from the early Eocene of Laguna del Hunco, Patagonia, Argentina". Australian Systematic Botany 32 (4): 290–309. doi:10.1071/SB18043. 
  71. Veit M. Dörken; Robert S. Hill; Gregory J. Jordan; Robert F. Parsons (2021). "Evolutionary and ecological significance of photosynthetic organs in Phyllocladus (Podocarpaceae)". Botanical Journal of the Linnean Society 196 (3): 343–363. doi:10.1093/botlinnean/boaa106. 
  72. Ana Andruchow-Colombo; Peter Wilf; Ignacio H. Escapa (2021). "Reaffirming the phyllocladoid affinities of Huncocladus laubenfelsii (Podocarpaceae) from the early Eocene of Patagonia: a comment on Dörken et al. (2021)". Botanical Journal of the Linnean Society 197 (4): 554–557. doi:10.1093/botlinnean/boab054. 
  73. Andrés Elgorriaga; Ignacio H. Escapa; N. Rubén Cúneo (2019). "Relictual Lepidopteris (Peltaspermales) from the Early Jurassic Cañadón Asfalto Formation, Patagonia, Argentina". International Journal of Plant Sciences 180 (6): 578–596. doi:10.1086/703461. 
  74. 74.0 74.1 Xue-Lian Wang; Yan-Zhao Ji; Yi-Fan Hua; Cong-Hui Xiong; Bai-Nian Sun (2019). "New materials of Mariopteris from the Cisuralian of northwestern China and their implications for palaeogeographic diversification". Historical Biology: An International Journal of Paleobiology 33 (7): 981–995. doi:10.1080/08912963.2019.1675054. 
  75. Heidi M. Anderson; Maria Barbacka; Marion K. Bamford; W. B. Keith Holmes; John M. Anderson (2019). "Pteruchus (microsporophyll): part 2 of a reassessment of Gondwana Triassic plant genera and a reclassification of some previously attributed". Alcheringa: An Australasian Journal of Palaeontology 43 (4): 540–562. doi:10.1080/03115518.2019.1617348. Bibcode2019Alch...43..511A. 
  76. Eugeny Karasev; Giuseppa Forte; Mario Coiro; Evelyn Kustatscher (2019). "Mutoviaspermum krassilovii gen. et sp. nov.: a peculiar compound ovuliferous conifer cone from the Lopingian (late Permian) of European Russia (Vologda Region)". International Journal of Plant Sciences 180 (8): 779–799. doi:10.1086/704944. 
  77. Isabela Degani-Schmidt; Margot Guerra-Sommer (2019). "Epidermal morphology of the cordaitalean leaf Noeggerathiopsis brasiliensis nom. nov. from the southern Paraná Basin (Lower Permian, Rio Bonito Formation) and paleoenvironmental considerations". Brazilian Journal of Geology 49 (2): e20190020. doi:10.1590/2317-4889201920190020. 
  78. Josef Pšenička; Erwin L. Zodrow; Jiří Bek (2019). "The compound synangial organ Potoniea krisiae sp. nov. and its plausible relationship with linopterids based on cuticles from the Late Pennsylvanian Sydney Coalfield, Canada". International Journal of Coal Geology 210: Article 103200. doi:10.1016/j.coal.2019.05.007. Bibcode2019IJCG..21003200P. 
  79. Mingli Wan; Wan Yang; Jun Wang (2019). "A new Protophyllocladoxylon wood from the Induan (Lower Triassic) Jiucaiyuan Formation in the Turpan–Hami Basin, southern Bogda Mountains, northwestern China". Review of Palaeobotany and Palynology 267: 62–72. doi:10.1016/j.revpalbo.2019.05.005. Bibcode2019RPaPa.267...62W. 
  80. 80.0 80.1 Chong Dong; Zhiyan Zhou; Bole Zhang; Yongdong Wang; Gongle Shi (2019). "Umaltolepis and associated Pseudotorellia leaves from the Middle Jurassic of Yima in Henan Province, Central China". Review of Palaeobotany and Palynology 271: Article 104111. doi:10.1016/j.revpalbo.2019.104111. Bibcode2019RPaPa.27104111D. 
  81. Martín A. Carrizo; Maiten A. Lafuente Diaz; Georgina M. Del Fueyo (2019). "Resolving taxonomic problems through cuticular analysis in Early Cretaceous bennettitalean leaves from Patagonia". Cretaceous Research 97: 40–51. doi:10.1016/j.cretres.2019.01.013. Bibcode2019CrRes..97...40C. 
  82. Maiten A. Lafuente Diaz; Martín A. Carrizo; Georgina M. Del Fueyo; José A. D'Angelo (2019). "Chemometric approach to the foliar cuticle of Ptilophyllum micropapillosum sp. nov. from the Springhill Formation (Lower Cretaceous, Argentina)". Review of Palaeobotany and Palynology 271: Article 104110. doi:10.1016/j.revpalbo.2019.104110. Bibcode2019RPaPa.27104110L. 
  83. Andrés Elgorriaga; Ignacio H. Escapa; N. Rubén Cúneo (2019). "Southern Hemisphere Caytoniales: vegetative and reproductive remains from the Lonco Trapial Formation (Lower Jurassic), Patagonia". Journal of Systematic Palaeontology 17 (17): 1477–1495. doi:10.1080/14772019.2018.1535456. 
  84. Mingli Wan; Wan Yang; Jun Wang (2019). "Sclerospiroxylon xinjiangensis nov. sp., a gymnospermous wood from the Kungurian (lower Permian) southern Bogda Mountains, northwestern China: systematics and palaeoecology". Geobios 52: 85–97. doi:10.1016/j.geobios.2018.11.005. Bibcode2019Geobi..52...85W. 
  85. Toshihiro Yamada; Takae F. Yamada; Kazuo Terada; Takeshi A. Ohsawa; Atsushi Yabe; Julien Legrand; Kazuhiko Uemura; Marcelo Leppe et al. (2019). "Sueria laxinervis, a new fossil species of Cycadales from the Upper Cretaceous Quiriquina Formation in Cocholgüe, Bíobío Region, Chile". Phytotaxa 402 (2): 126–130. doi:10.11646/phytotaxa.402.2.7. 
  86. 86.0 86.1 Gongle Shi; Peter R. Crane; Patrick S. Herendeen; Niiden Ichinnorov; Masamichi Takahashi; Fabiany Herrera (2019). "Diversity and homologies of corystosperm seed-bearing structures from the Early Cretaceous of Mongolia". Journal of Systematic Palaeontology 17 (12): 997–1029. doi:10.1080/14772019.2018.1493547. 
  87. Malte Backer; Benjamin Bomfleur; Hans Kerp (2019). "Reconstruction of a small-leaved cordaitalean plant from the Permian of North China by means of cuticular analysis". International Journal of Plant Sciences 180 (7): 709–723. doi:10.1086/704375. 
  88. Yang Yang; Xiao-Yuan He; Jason Hilton; Fu-Guang Zhao; Xin-Shi Chen; Shi-Jun Wang (2019). "Xuanweioxylon damogouense sp. nov., a gymnosperm stem from the Lopingian (late Permian) of southwestern China and its systematic and paleoecological implications". Review of Palaeobotany and Palynology 269: 94–103. doi:10.1016/j.revpalbo.2019.06.012. Bibcode2019RPaPa.269...94Y. http://pure-oai.bham.ac.uk/ws/files/68259486/Xuanweioxylon_damogouense_manuscript_revision.pdf. 
  89. Zhong-Jian Liu; Ye-Mao Hou; Xin Wang (2019). "Zhangwuia: an enigmatic organ with a bennettitalean appearance and enclosed ovules". Earth and Environmental Science Transactions of the Royal Society of Edinburgh 108 (4): 419–428. doi:10.1017/S1755691018000257. 
  90. Carole T. Gee; David Winship Taylor (2019). "An extinct transitional leaf genus of Nymphaeaceae from the Eocene lake at Messel, Germany: Nuphaea engelhardtii Gee et David W. Taylor gen. et sp. nov.". International Journal of Plant Sciences 180 (7): 724–736. doi:10.1086/704376. 
  91. 91.00 91.01 91.02 91.03 91.04 91.05 91.06 91.07 91.08 91.09 91.10 91.11 91.12 91.13 91.14 91.15 91.16 91.17 91.18 91.19 91.20 91.21 91.22 91.23 91.24 Else Marie Friis; Peter R. Crane; Kaj Raunsgaard Pedersen (2019). "The Early Cretaceous mesofossil flora of Torres Vedras (NE of Forte da Forca), Portugal: a palaeofloristic analysis of an early angiosperm community". Fossil Imprint 75 (2): 153–257. doi:10.2478/if-2019-0013. http://fi.nm.cz/wp-content/uploads/2019/11/2_Friis.pdf. 
  92. Gabriela G. Puebla; Bárbara Vento; Mercedes B. Prámparo (2019). "An aquatic angiosperm of the Late Cretaceous, Mendoza Province, central-western Argentina: its phylogenetic position in Araceae". Historical Biology: An International Journal of Paleobiology 33 (8): 1222–1230. doi:10.1080/08912963.2019.1687696. 
  93. 93.0 93.1 Luis Miguel Sender; James A. Doyle; Garland R. Upchurch Jr; Uxue Villanueva-Amadoz; José B. Diez (2019). "Leaf and inflorescence evidence for near-basal Araceae and an unexpected diversity of other monocots from the late Early Cretaceous of Spain". Journal of Systematic Palaeontology 17 (15): 1313–1346. doi:10.1080/14772019.2018.1528999. https://escholarship.org/uc/item/0715f8ng. 
  94. Mahasin Ali Khan; Kakali Mandal; Subir Bera (2019). "A new species of permineralized palm stem from the Maastrichtian–Danian sediments of Central India and its palaeoclimatic signal". Botany Letters 166 (2): 189–206. doi:10.1080/23818107.2019.1600166. 
  95. T. Su; A. Farnsworth; R. A. Spicer; J. Huang; F.-X. Wu; J. Liu; S.-F. Li; Y.-W. Xing et al. (2019). "No high Tibetan Plateau until the Neogene". Science Advances 5 (3): eaav2189. doi:10.1126/sciadv.aav2189. PMID 30854430. Bibcode2019SciA....5.2189S. 
  96. 96.0 96.1 Friðgeir Grímsson; Bonnie F. Jacobs; Johan L. C. H. Van Valkenburg; Jan J. Wieringa; Alexandros Xafis; Neil Tabor; Aaron D. Pan; Reinhard Zetter (2019). "Sclerosperma fossils from the late Oligocene of Chilga, north-western Ethiopia". Grana 58 (2): 81–98. doi:10.1080/00173134.2018.1510977. PMID 30828285. 
  97. 97.0 97.1 Heinrich Winterscheid (2019). "Nomenclatural novelties in the fossil genus Spinopalmoxylon (Arecaceae) from the Central European Oligocene and Miocene: A whole-plant concept for Spinopalmoxylon daemonorops". Acta Palaeobotanica 59 (2): 351–365. doi:10.2478/acpa-2019-0016. 
  98. Patricia Vallati; Andrea De Sosa Tomas; Gabriel Casal (2020). "A Maastrichtian terrestrial palaeoenvironment close to the K/Pg boundary in the Golfo San Jorge basin, Patagonia, Argentina". Journal of South American Earth Sciences 97: Article 102401. doi:10.1016/j.jsames.2019.102401. Bibcode2020JSAES..9702401V. 
  99. Rakesh Chandra Mehrotra; Anumeha Shukla (2019). "First record of Dioscorea from the early Eocene of northwestern India: Its evolutionary and palaeoecological importance". Review of Palaeobotany and Palynology 261: 11–17. doi:10.1016/j.revpalbo.2018.11.008. Bibcode2019RPaPa.261...11M. 
  100. Zlatko Kvaček (2019). "Dioscorea manchesteri Kvaček, sp. nov., a new fossil species from the early Miocene flora of North Bohemia (Czech Republic)". Acta Palaeobotanica 59 (2): 367–371. doi:10.2478/acpa-2019-0017. 
  101. 101.0 101.1 101.2 101.3 Gaurav Srivastava; Tao Su; Rakesh Chandra Mehrotra; Pushpa Kumari; Uma Shankar (2019). "Bamboo fossils from Oligo–Pliocene sediments of northeast India with implications on their evolutionary ecology and biogeography in Asia". Review of Palaeobotany and Palynology 262: 17–27. doi:10.1016/j.revpalbo.2018.12.002. Bibcode2019RPaPa.262...17S. 
  102. Ping Lu; Ya Li; Jian-Wei Zhang; Xiao-Qing Liang; Yue-Zhuo Li; Cheng-Sen Li (2019). "Fruits of Scirpus (Cyperaceae) from the early Miocene of Weichang, Hebei Province, North China and their palaeoecological and palaeobiogeographical implications". Journal of Palaeogeography 8 (1): Article 15. doi:10.1186/s42501-019-0030-x. Bibcode2019JPalG...8...15L. 
  103. 103.00 103.01 103.02 103.03 103.04 103.05 103.06 103.07 103.08 103.09 103.10 103.11 103.12 103.13 103.14 103.15 103.16 103.17 103.18 103.19 103.20 103.21 103.22 103.23 103.24 103.25 103.26 103.27 103.28 103.29 103.30 103.31 103.32 103.33 Mahesh Prasad; Somlata Gautam; Nupur Bhowmik; Sanjeev Kumar; Sanjai Kumar Singh (2019). "Miocene flora from the Siwalik of Arjun Khola area, Nepal and its palaeoclimatic and phytogeographic implications". The Palaeobotanist 68 ((1-2)): 1–111. doi:10.54991/jop.2019.37. 
  104. Diana Karen Pérez-Lara; Emilio Estrada-Ruiz; Carlos Castañeda-Posadas (2019). "Nueva especie de Laurinoxylon (Lauraceae) de la Formación El Bosque (Eoceno), Chiapas, México". Boletín de la Sociedad Geológica Mexicana 71 (3): 761–772. doi:10.18268/BSGM2019v71n3a8. http://boletinsgm.igeolcu.unam.mx/bsgm/vols/epoca04/7103/(8)Perez.pdf. 
  105. 105.0 105.1 105.2 105.3 Ünal Akkemik; Hüseyin Akkılıç; Yıldırım Güngör (2019). "Fossil wood from the Neogene of the Kilyos coastal area in Istanbul, Turkey". Palaeontographica Abteilung B 299 (1–6): 133–185. doi:10.1127/palb/2019/0065. Bibcode2019PalAB.299..133A. 
  106. 106.0 106.1 106.2 106.3 106.4 Zixi Wang; Fankai Sun; Jidong Wang; Defei Yan; Junling Dong; Mingxuan Sun; Bainian Sun (2019). "New fossil leaves and fruits of Lauraceae from the Middle Miocene of Fujian, southeastern China differentiated using a cluster analysis". Historical Biology: An International Journal of Paleobiology 31 (5): 581–599. doi:10.1080/08912963.2017.1379517. 
  107. 107.0 107.1 107.2 Daniela P. Ruiz; M. Sol Raigemborn; Mariana Brea; Roberto R. Pujana (2020). "Paleocene Las Violetas Fossil Forest: Wood anatomy and paleoclimatology". Journal of South American Earth Sciences 98: Article 102414. doi:10.1016/j.jsames.2019.102414. Bibcode2020JSAES..9802414R. 
  108. Qijia Li; Gongle Shi; Yusheng Liu; Qiongyao Fu; Jianhua Jin; Cheng Quan (2019). "The early history of Annonaceae (Magnoliales) in Southeast Asia suggests floristic exchange between India and Pan‐Indochina by the late Oligocene". Papers in Palaeontology 5 (4): 601–612. doi:10.1002/spp2.1249. 
  109. 109.0 109.1 Else Marie Friis; Peter R. Crane; Kaj Raunsgaard Pedersen (2019). "Extinct diversity among Early Cretaceous angiosperms: mesofossil evidence of early Magnoliales from Portugal". International Journal of Plant Sciences 180 (2): 93–127. doi:10.1086/701319. https://pure.au.dk/ws/files/195353932/Friis_2019_Extinct_diversity_among_early_cretaceous_angiosperms_published_version_.pdf. 
  110. Else Marie Friis; Peter R. Crane; Kaj Raunsgaard Pedersen (2019). "Hedyosmum-like fossils in the Early Cretaceous diversification of angiosperms". International Journal of Plant Sciences 180 (3): 232–239. doi:10.1086/701819. https://pure.au.dk/ws/files/195353291/701819.pdf. 
  111. 111.00 111.01 111.02 111.03 111.04 111.05 111.06 111.07 111.08 111.09 111.10 Indah B. Huegele; Steven R. Manchester (2019). "Newly recognized diversity of fruits and seeds from the late Paleogene flora of Trinity County, East Texas, USA". International Journal of Plant Sciences 180 (7): 681–708. doi:10.1086/704358. 
  112. Ge Sun; Tatiana Kovaleva; Fei Liang; Tao Yang; Yuhui Feng (2019). "A new species of Platanus from the Cenomanian (Upper Cretaceous) in eastern Heilongjiang, China". Geoscience Frontiers 10 (4): 1535–1541. doi:10.1016/j.gsf.2018.10.006. Bibcode2019GeoFr..10.1535S. 
  113. 113.0 113.1 Roberto R. Pujana; Daniela P. Ruiz (2019). "Fossil woods from the Eocene–Oligocene (Río Turbio Formation) of southwestern Patagonia (Santa Cruz province, Argentina)". IAWA Journal 40 (3): 596–S3. doi:10.1163/22941932-40190253. 
  114. 114.00 114.01 114.02 114.03 114.04 114.05 114.06 114.07 114.08 114.09 114.10 Alexander B. Doweld (2019). "New names for Ilex and Ilexpollenites (Aquifoliaceae), extant and fossil. Notulae Systematicae ad Palaeofloram Europaeam spectantes II. Aquifoliaceae". Phytotaxa 388 (2): 179–191. doi:10.11646/phytotaxa.388.2.5. 
  115. Anjum Farooqui; Joseph G. Ray; Arti Garg (2019). "An extinct species of Basella: pollen evidence from sediments (~80 ka) in Kerala, India". Grana 58 (6): 399–407. doi:10.1080/00173134.2019.1630479. 
  116. Brian A. Atkinson; Camila Martínez; William L. Crepet (2019). "Cretaceous asterid evolution: fruits of Eydeia jerseyensis sp. nov. (Cornales) from the upper Turonian of eastern North America". Annals of Botany 123 (3): 451–460. doi:10.1093/aob/mcy170. PMID 30212854. 
  117. MacKenzie Smith; Steven R. Manchester (2019). "A new species of "gigantic" capsular fruits of Vaccinioideae from the Miocene of Idaho". Palaeontologia Electronica 22 (3): Article number 22.3.65. doi:10.26879/982. 
  118. Lin‐Bo Jia; Steven R. Manchester; Jian Huang; Tao Su; Li Xue; Shi‐Tao Zhang; Yong‐Jiang Huang; Zhe‐Kun Zhou (2019). "First fossil record of an East Asian endemic genus Sladenia (Sladeniaceae) from its modern range: implications for floristic evolution and conservation biology". Journal of Systematics and Evolution 59 (1): 216–226. doi:10.1111/jse.12518. 
  119. 119.00 119.01 119.02 119.03 119.04 119.05 119.06 119.07 119.08 119.09 119.10 119.11 119.12 D.W. Woodcock; H.W. Meyer; Y. Prado (2019). "The Piedra Chamana fossil woods (Eocene, Peru), II". IAWA Journal 40 (3): 551–595. doi:10.1163/22941932-40190231. 
  120. 120.0 120.1 Cédric Del Rio; Gregory W. Stull; Dario De Franceschi (2019). "New species of Iodes fruits (Icacinaceae) from the early Eocene Le Quesnoy locality, Oise, France". Review of Palaeobotany and Palynology 262: 60–71. doi:10.1016/j.revpalbo.2018.12.005. Bibcode2019RPaPa.262...60D. 
  121. 121.0 121.1 121.2 121.3 121.4 Cédric Del Rio; Romain Thomas; Dario De Franceschi (2019). "Fruits of Icacinaceae Miers from the Palaeocene of the Paris Basin (Oise, France)". Earth and Environmental Science Transactions of the Royal Society of Edinburgh 108 (4): 459–469. doi:10.1017/S1755691018000221. 
  122. Anwesha Biswas; Mahasin Ali Khan; Subir Bera (2019). "Occurrence of Dryobalanops Gaertn. (Dipterocarpaceae) in the late Miocene of Bengal basin, India and biogeography of the genus during the Cenozoic of Southeast Asia". Botany Letters 166 (4): 434–443. doi:10.1080/23818107.2019.1672102. 
  123. Jia Liu; Tao Su; Robert A. Spicer; He Tang; Wei-Yu-Dong Deng; Fei-Xiang Wu; Gaurav Srivastava; Teresa Spicer et al. (2019). "Biotic interchange through lowlands of Tibetan Plateau suture zones during Paleogene". Palaeogeography, Palaeoclimatology, Palaeoecology 524: 33–40. doi:10.1016/j.palaeo.2019.02.022. Bibcode2019PPP...524...33L. 
  124. 124.0 124.1 124.2 Fabiany Herrera; Mónica R. Carvalho; Carlos Jaramillo; Steven R. Manchester (2019). "19-million-year-old spondioid fruits from Panama reveal a dynamic dispersal history for Anacardiaceae". International Journal of Plant Sciences 180 (6): 479–492. doi:10.1086/703551. 
  125. Hui Jiang; Tao Su; William Oki Wong; Feixiang Wu; Jian Huang; Gongle Shi (2019). "Oligocene Koelreuteria (Sapindaceae) from the Lunpola Basin in central Tibet and its implication for early diversification of the genus". Journal of Asian Earth Sciences 175: 99–108. doi:10.1016/j.jseaes.2018.01.014. Bibcode2019JAESc.175...99J. 
  126. Aixa Tosal; Josep Sanjuan; Carles Martín-Closas (2019). "Foliar adaptations of Rhus asymmetrica sp. nov. from the Oligocene of Cervera (Catalonia, Spain). Palaeoclimatic implications". Review of Palaeobotany and Palynology 261: 67–80. doi:10.1016/j.revpalbo.2018.11.011. Bibcode2019RPaPa.261...67T. 
  127. 127.0 127.1 127.2 Soon Flynn; Melanie L. DeVore; Kathleen B. Pigg (2019). "Morphological features of sumac leaves (Rhus, Anacardiaceae), from the latest Early Eocene flora of Republic, Washington". International Journal of Plant Sciences 180 (6): 464–478. doi:10.1086/703526. https://www.researchgate.net/publication/333659762. 
  128. John G. Conran; Uwe Kaulfuss; Jennifer M. Bannister; Dallas C. Mildenhall; Daphne E. Lee (2019). "An Akania (Akaniaceae) inflorescence with associated pollen from the early Miocene of New Zealand". American Journal of Botany 106 (2): 292–302. doi:10.1002/ajb2.1236. PMID 30791095. 
  129. Ana L. Hernández-Damián; Sergio R. S. Cevallos-Ferriz; Alma R. Huerta-Vergara (2019). "Fossil flower of Staphylea L. from the Miocene amber of Mexico: New evidence of the Boreotropical Flora in low-latitude North America". Earth and Environmental Science Transactions of the Royal Society of Edinburgh 108 (4): 471–478. doi:10.1017/S1755691018000701. 
  130. Patrick S. Herendeen; Fabiany Herrera (2019). "Eocene fossil legume leaves referable to the extant genus Arcoa (Caesalpinioideae, Leguminosae)". International Journal of Plant Sciences 180 (3): 220–231. doi:10.1086/701468. 
  131. 131.0 131.1 Grzegorz Worobiec; Elżbieta Worobiec (2019). "Wetland vegetation from the Miocene deposits of the Bełchatów Lignite Mine (central Poland)". Palaeontologia Electronica 22 (3): Article number 22.3.63. doi:10.26879/871. 
  132. Anumeha Shukla; Hukam Singh; R. C. Mehrotra (2019). "Fossil Wood of Subfamily Detarioideae (family Fabaceae) from the Paleogene of the Indian Subcontinent: Origin and Palaeo-dispersal Pathways". Journal of the Geological Society of India 94 (4): 411–415. doi:10.1007/s12594-019-1329-z. 
  133. Zixi Wang; Gongle Shi; Bainian Sun; Suxin Yin (2019). "A new species of Ormosia (Leguminosae) from the middle Miocene of Fujian, Southeast China and its biogeography". Review of Palaeobotany and Palynology 270: 40–47. doi:10.1016/j.revpalbo.2019.07.003. Bibcode2019RPaPa.270...40W. 
  134. Diana K. Pérez-Lara; Emilio Estrada-Ruiz; Carlos Castañeda-Posadas (2019). "New fossil woods of Fabaceae from El Bosque Formation (Eocene), Chiapas, Mexico". Journal of South American Earth Sciences 94: Article 102202. doi:10.1016/j.jsames.2019.05.018. Bibcode2019JSAES..9402202P. 
  135. Peter Wilf; Kevin C. Nixon; Maria A. Gandolfo; N. Rubén Cúneo (2019). "Eocene Fagaceae from Patagonia and Gondwanan legacy in Asian rainforests". Science 364 (6444): eaaw5139. doi:10.1126/science.aaw5139. PMID 31171664. 
  136. Thomas Denk; Robert S. Hill; Marco C. Simeone; Chuck Cannon; Mary E. Dettmann; Paul S. Manos (2019). "Comment on "Eocene Fagaceae from Patagonia and Gondwanan legacy in Asian rainforests"". Science 366 (6467): eaaz2189. doi:10.1126/science.aaz2189. PMID 31727801. 
  137. Peter Wilf; Kevin C. Nixon; Maria A. Gandolfo; N. Rubén Cúneo (2019). "Response to Comment on "Eocene Fagaceae from Patagonia and Gondwanan legacy in Asian rainforests"". Science 366 (6467): eaaz2297. doi:10.1126/science.aaz2297. PMID 31727802. 
  138. Mathew R. Vanner (2019). "Miocene Casuarinaceae wood from Landslip Hill, Southland, New Zealand". IAWA Journal 40 (3): 627–639. doi:10.1163/22941932-40190244. 
  139. Xiao‐Yan Liu; Sheng‐Lan Xu; Meng Han; Jian‐Hua Jin (2019). "An early Oligocene fossil acorn, associated leaves and pollen of the ring‐cupped oaks (Quercus subg. Cyclobalanopsis) from Maoming Basin, South China". Journal of Systematics and Evolution 57 (2): 153–168. doi:10.1111/jse.12450. 
  140. Zixi Wang; Fankai Sun; Jidong Wang; Junling Dong; Sanping Xie; Mingxuan Sun; Bainian Sun (2019). "The diversity and paleoenvironmental significance of Calophyllum (Clusiaceae) from the Miocene of southeastern China". Historical Biology: An International Journal of Paleobiology 31 (10): 1379–1393. doi:10.1080/08912963.2018.1455677. 
  141. Rashmi Srivastava; Regis B. Miller; Pieter Baas (2019). "More Malpighiales: Woods of Achariaceae and/or Salicaceae from the Deccan Intertrappean Beds, India". Journal of Systematics and Evolution 57 (2): 200–208. doi:10.1111/jse.12455. 
  142. Zixi Wang; Fankai Sun; Sanping Xie; Jidong Wang; Yijie Li; Junling Dong; Mingxuan Sun; Bainian Sun (2019). "A new species of Garcinia (Clusiaceae) from the middle Miocene of Fujian, China, and a phytogeographic analysis". Geological Journal 54 (3): 1317–1330. doi:10.1002/gj.3228. 
  143. Naylet K. Centeno-González; Héctor Porras-Múzquiz; Emilio Estrada-Ruiz (2019). "A new fossil genus of angiosperm leaf from the Olmos Formation (upper Campanian), of northern Mexico". Journal of South American Earth Sciences 91: 80–87. doi:10.1016/j.jsames.2019.01.016. Bibcode2019JSAES..91...80C. 
  144. Markus Sachse (2019). "Populus erratica Sachse, nom. nov. – not really new, but a stratigraphically informative species from the late Oligocene and early Miocene of Central Europe". Acta Palaeobotanica 59 (1): 69–73. doi:10.2478/acpa-2019-0009. 
  145. George O. Poinar, Jr; Kenton L. Chambers (2019). "Tropidogyne lobodisca sp. nov., a third species of the genus from mid-Cretaceous Myanmar amber". Journal of the Botanical Research Institute of Texas 13 (2): 461–466. doi:10.17348/jbrit.v13.i2.798. 
  146. Lin‐Bo Jia; Tao Su; Yong‐Jiang Huang; Fei‐Xiang Wu; Tao Deng; Zhe‐Kun Zhou (2019). "First fossil record of Cedrelospermum (Ulmaceae) from the Qinghai–Tibetan Plateau: Implications for morphological evolution and biogeography". Journal of Systematics and Evolution 57 (2): 94–104. doi:10.1111/jse.12435. 
  147. 147.0 147.1 William Oki Wong; David L. Dilcher; Kazuhiko Uemura (2019). "Three new fossil-species of Pteroceltis (Cannabaceae) from East Asia". Phytotaxa 409 (1): 1–11. doi:10.11646/phytotaxa.409.1.1. 
  148. 148.0 148.1 Alexander B. Doweld (2019). "New names of fossil Rubus (Rosaceae). Addendum I". Phytotaxa 393 (2): 198–200. doi:10.11646/phytotaxa.393.2.6. 
  149. Terry A. Lott; Steven R. Manchester; Sarah L. Corbett (2019). "The Miocene flora of Alum Bluff, Liberty County, Florida". Acta Palaeobotanica 59 (1): 75–129. doi:10.2478/acpa-2019-0003. 
  150. Natalia P. Maslova; Tatiana M. Kodrul; Alexei B. Herman; Ming Tu; Xiaoyan Liu; Jianhua Jin (2019). "A new species of Liquidambar (Altingiaceae) from the late Eocene of South China". Journal of Plant Research 132 (2): 223–236. doi:10.1007/s10265-019-01091-0. PMID 30840210. 
  151. Steven R. Manchester; Dashrath K. Kapgate; Deepak D. Ramteke; Sharadkumar P. Patil; Selena Y. Smith (2019). "Morphology and anatomy of the angiosperm fruit Baccatocarpon, incertae sedis, from the Maastrichtian Deccan Intertrappean Beds of India". Acta Palaeobotanica 59 (2): 241–250. doi:10.2478/acpa-2019-0019. 
  152. 152.0 152.1 Catherine Smith; Sophie Warny; Amelia E. Shevenell; Sean P.S. Gulick; Amy Leventer (2019). "New species from the Sabrina Flora: an early Paleogene pollen and spore assemblage from the Sabrina Coast, East Antarctica". Palynology 43 (4): 650–659. doi:10.1080/01916122.2018.1471422. Bibcode2019Paly...43..650S. 
  153. Steven Manchester; Terry A. Lott (2019). "Bonanzacarpum sprungerorum sp. nov. – a bizarre fruit from the Eocene Green River Formation in Utah, USA". Fossil Imprint 75 (2): 281–288. doi:10.2478/if-2019-0016. http://fi.nm.cz/wp-content/uploads/2019/11/5_Manchester.pdf. 
  154. Clément Coiffard; Nikolay Kardjilov; Ingo Manke; Mary E. C. Bernardes-de-Oliveira (2019). "Fossil evidence of core monocots in the Early Cretaceous". Nature Plants 5 (7): 691–696. doi:10.1038/s41477-019-0468-y. PMID 31285562. 
  155. A.B. Herman; V.V. Kostyleva; P.A. Nikolskii; A.E. Basilyan; A.E. Kotel’nikov (2019). "New data on the Late Cretaceous flora of the New Siberia Island, New Siberian Islands". Stratigraphy and Geological Correlation 27 (3): 323–338. doi:10.1134/S0869593819030031. Bibcode2019SGC....27..323H. https://journals.eco-vector.com/0869-592X/article/view/11925. 
  156. George O. Poinar Jr.; Kenton L. Chambers (2019). "Dispariflora robertae gen. et sp. nov., a mid-Cretaceous flower of possible Lauralean affinity from Myanmar amber". Journal of the Botanical Research Institute of Texas 13 (1): 173–183. doi:10.17348/jbrit.v13.i1.839. 
  157. George O. Poinar, Jr (2019). "Exalloanthum, a new name for a fossil angiosperm flower in Myanmar amber". Journal of the Botanical Research Institute of Texas 13 (2): 475–476. doi:10.17348/jbrit.v13.i2.800. 
  158. 158.0 158.1 Karen Chin; Emilio Estrada-Ruiz; Elisabeth A. Wheeler; Garland R. Upchurch Jr.; Douglas G. Wolfe (2019). "Early angiosperm woods from the mid-Cretaceous (Turonian) of New Mexico, USA: Paraphyllanthoxylon, two new taxa, and unusual preservation". Cretaceous Research 98: 292–304. doi:10.1016/j.cretres.2019.01.017. Bibcode2019CrRes..98..292C. 
  159. He Tang; Jia Liu; Fei‐Xiang Wu; Teresa Spicer; Robert A. Spicer; Wei‐Yu‐Dong Deng; Cong‐Li Xu; Fan Zhao et al. (2019). "Extinct genus Lagokarpos reveals a biogeographic connection between Tibet and other regions in the Northern Hemisphere during the Paleogene". Journal of Systematics and Evolution 57 (6): 670–677. doi:10.1111/jse.12505. 
  160. A. Boura; G. Saulnier; D. De Franceschi; B. Gomez; V. Daviero-Gomez; D. Pons; G. Garcia; N. Robin et al. (2019). "An early record of a vesselless angiosperm from the middle Cenomanian of the Envigne valley (Vienne, Western France)". IAWA Journal 40 (3): 530–550. doi:10.1163/22941932-40190238. https://hal.archives-ouvertes.fr/hal-02871851v2/file/Boura%20et%20al.%202019%20%281%29.pdf. 
  161. George O. Poinar, Jr; Kenton L. Chambers (2019). "Strombothelya gen. nov., a fossil angiosperm with two species in mid-Cretaceous Myanmar amber". Journal of the Botanical Research Institute of Texas 13 (2): 451–460. doi:10.17348/jbrit.v13.i2.797. 
  162. Elisabeth A. Wheeler; Peter K. Brown; Allan J. Koch (2019). "Late Paleocene woods from Cherokee Ranch, Colorado, U.S.A.". Rocky Mountain Geology 54 (1): 33–46. doi:10.24872/rmgjournal.54.1.33. Bibcode2019RMGeo..54...33W. 
  163. George O. Poinar, Jr; Kenton L. Chambers (2019). "Zygadelphus aetheus gen. et sp. nov., an unusual fossil flower from mid-Cretaceous Myanmar amber". Journal of the Botanical Research Institute of Texas 13 (2): 467–473. doi:10.17348/jbrit.v13.i2.799. 
  164. 164.0 164.1 Filippo Barattolo; Viorel Ionesi; Paul Ţibuleac (2019). "A new polyphysacean alga from the Miocene of Romania and its biomineralization". Acta Palaeontologica Polonica 64 (1): 85–100. doi:10.4202/app.00537.2018. 
  165. Bruno R.C. Granier; Alexandre Lethiers (2019). "Aloisalthella, a new genus of fossil Polyphysacean green algae (Chlorophyta, Dasycladales), with notes on the genus Clypeina (Michelin, 1845)". Palaeontologia Electronica 22 (2): Article number 22.2.45. doi:10.26879/923. 
  166. B. Cascales-Miñana; J. Z. Xue; G. Rial; P. Gerrienne; P. Huang; P. Steemans (2019). "Revisiting the spore assemblages from the Lower Devonian Posongchong Formation of Wenshan, Yunnan Province, southwestern China". Earth and Environmental Science Transactions of the Royal Society of Edinburgh 108 (4): 339–354. doi:10.1017/S1755691018000233. https://hal.archives-ouvertes.fr/hal-02397175/file/Cascales-Mi%C3%B1ana%20et%20al.%202019_Earth%20Environ.%20Sci.%20Trans.%20R.%20Soc.%20Edinb.pdf. 
  167. 167.0 167.1 Lassad Tiss; Khaled Trabelsi; Fekri Kamoun; Mohamed Soussi; Yassine Houla; Benjamin Sames; Carles Martín-Closas (2019). "Middle Jurassic charophytes from southern Tunisia: Implications on evolution and paleobiogeography". Review of Palaeobotany and Palynology 263: 65–84. doi:10.1016/j.revpalbo.2019.01.011. Bibcode2019RPaPa.263...65T. 
  168. Bruno R.C. Granier; Ioan I. Bucur (2019). "Le genre Bakalovaella Bucur, 1993 (Dasycladeae, Dasycladaceae), et description de son plus ancien représentant crétacé". Carnets de Géologie 19 (1): 1–19. doi:10.4267/2042/69540. 
  169. 169.0 169.1 Steven T. LoDuca (2019). "New Ordovician marine macroalgae from North America, with observations on Buthograptus, Callithamnopsis, and Chaetocladus". Journal of Paleontology 93 (2): 197–214. doi:10.1017/jpa.2018.76. Bibcode2019JPal...93..197L. 
  170. 170.0 170.1 Karl Krainer; Daniel Vachard; Maria Schaffhauser (2019). "Yakhtashian (Artinskian–Early Kungurian) cyanobacteria and calcareous algae from the Carnic Alps (Austria/Italy)". Palaeontologia Electronica 22 (3): Article number 22.3.54. doi:10.26879/931. 
  171. Mélanie Tanrattana; Brigitte Meyer-Berthaud; Anne-Laure Decombeix (2019). "Callixylon wendtii sp. nov., a new species of archaeopteridalean progymnosperm from the Late Devonian of Anti-Atlas, Morocco". Earth and Environmental Science Transactions of the Royal Society of Edinburgh 108 (4): 373–385. doi:10.1017/S1755691017000457. 
  172. Yujin Zhang; Bingcai Liu; Fei Liang (2019). "A new species of Coniopteris moguqiensis sp. nov. from the Middle Jurassic Wanbao Formation in Eastern Inner Mongolia, China". Acta Geologica Sinica (English Edition) 93 (5): 1317–1324. doi:10.1111/1755-6724.14363. http://www.geojournals.cn/dzxben/ch/reader/view_abstract.aspx?file_no=2019endzxb05010&flag=1. 
  173. Felix Schlagintweit; Koorosh Rashidi; Hamed Yarahmadzahi; Sharam Habibimood; Mahnaz Amirshahkarmi; Hossain Ahmadi; Hossain Khokan (2019). "Dissocladella? chahtorshiana Rashidi & Schlagintweit n. sp., a new dasycladale (green algae) from the Paleocene of Iran". Acta Palaeontologica Romaniae 15 (2): 3–13. doi:10.35463/j.apr.2019.02.01. https://actapalrom.geo-paleontologica.org/APR_v_15_2/Schlagintweit_etal_Dissocladella_Iran_1.pdf. 
  174. K. Rashidi; F. Schlagintweit (2019). "Dissocladella compressa n. sp., a new Dasycladale (green algae) from the Upper Maastrichtian of Iran". Arabian Journal of Geosciences 12 (7): Article 247. doi:10.1007/s12517-019-4403-3. 
  175. George Poinar; Alex E. Brown (2019). "A green algae (Chaetophorales: Chaetophoraceae) in Burmese amber". Historical Biology: An International Journal of Paleobiology 33 (3): 323–327. doi:10.1080/08912963.2019.1616719. ISSN 0891-2963. 
  176. 176.0 176.1 176.2 176.3 Maya A. Bickner; Alexandru M.F. Tomescu (2019). "Structurally complex, yet anatomically plesiomorphic: permineralized plants from the Emsian of Gaspé (Quebec, Canada) expand the diversity of Early Devonian euphyllophytes". IAWA Journal 40 (3): 421–445. doi:10.1163/22941932-40190234. 
  177. Maria Barbacka; Grzegorz Pacyna; Artur Górecki; Evelyn Kustatscher (2019). "Leonophyllum tenellum nov. gen., nov. sp., an enigmatic plant from the Early Jurassic of the Mecsek Mts (Hungary)". Geobios 53: 1–7. doi:10.1016/j.geobios.2019.02.004. Bibcode2019Geobi..53....1B. 
  178. Dmitriy A. Mamontov; Duncan McLean; Olga A. Orlova; Olga A. Gavrilova (2019). "Maiaspora: a new miospore genus with enigmatic sculpture from the late Visean of European Russia". Papers in Palaeontology 7 (1): 263–306. doi:10.1002/spp2.1278. 
  179. Anne-Laure Decombeix; Jean Galtier; Stephen McLoughlin; Brigitte Meyer-Berthaud; Gregory E. Webb; Paul R. Blake (2019). "Early Carboniferous lignophyte tree diversity in Australia: Woods from the Drummond and Yarrol basins, Queensland". Review of Palaeobotany and Palynology 263: 47–64. doi:10.1016/j.revpalbo.2019.01.009. Bibcode2019RPaPa.263...47D. https://hal.archives-ouvertes.fr/hal-02132903/file/Decombeix%20et%20al%20RPP%202019%20postprint%20for%20HAL.pdf. 
  180. Carmine C. Wainman; Daniel J. Mantle; Carey Hannaford; Peter J. McCabe (2019). "Possible freshwater dinoflagellate cysts and colonial algae from the Upper Jurassic strata of the Surat Basin, Australia". Palynology 43 (3): 411–422. doi:10.1080/01916122.2018.1451785. Bibcode2019Paly...43..411W. 
  181. Koorosh Rashidi; Felix Schlagintweit (2019). "New data on some type-species of Maastrichtian-Paleocene Dasycladales (Green algae) from Iran. Part I. Pseudocymopolia Elliott, 1970". Carnets de Géologie 19 (6): 97–111. doi:10.4267/2042/70194. 
  182. Petr Kraft; Josef Pšenička; Jakub Sakala; Jiří Frýda (2019). "Initial plant diversification and dispersal event in upper Silurian of the Prague Basin". Palaeogeography, Palaeoclimatology, Palaeoecology 514: 144–155. doi:10.1016/j.palaeo.2018.09.034. Bibcode2019PPP...514..144K. 
  183. Koorosh Rashidi; Felix Schlagintweit (2019). "Uteria naghanensis n. sp. (Dasycladale) from the Upper Maastrichtian of Iran". Carnets de Géologie 19 (2): 21–33. doi:10.4267/2042/69755. 
  184. Charles H. Wellman; Linda E. Graham; Louise A. Lewis (2019). "Filamentous green algae from the Early Devonian Rhynie chert". PalZ 93 (3): 387–393. doi:10.1007/s12542-019-00456-z. 
  185. Filippo Barattolo; Nicola Carras; Marc André Conrad; Rajka Radoičić (2019). "Falsolikanella campanensis (Azéma and Jaffrezo, 1972) Granier, 1987 revisited on type material, evidence of polyphysacean nature (green algae)". Journal of Paleontology 93 (4): 593–611. doi:10.1017/jpa.2018.108. Bibcode2019JPal...93..593B. 
  186. Alba Vicente; Zoltán Csiki-Sava; Carles Martín-Closas (2019). "European charophyte evolution across the Cretaceous–Paleogene boundary". Palaeogeography, Palaeoclimatology, Palaeoecology 533: Article 109244. doi:10.1016/j.palaeo.2019.109244. Bibcode2019PPP...53309244V. 
  187. Claudia V. Rubinstein; Vivi Vajda (2019). "Baltica cradle of early land plants? Oldest record of trilete spores and diverse cryptospore assemblages; evidence from Ordovician successions of Sweden". GFF 141 (3): 181–190. doi:10.1080/11035897.2019.1636860. Bibcode2019GFF...141..181R. 
  188. Alexander J. Askew; Charles H. Wellman (2019). "An endemic flora of dispersed spores from the Middle Devonian of Iberia". Papers in Palaeontology 5 (3): 415–459. doi:10.1002/spp2.1245. 
  189. Marcela Quetglas; Cecilia Macluf; Mercedes di Pasquo (2019). "Morphology of the megaspore Lagenoisporites magnus (Chi and Hills 1976) Candilier et al. (1982), from the Carboniferous (lower Mississippian: mid-upper Tournaisian) of Bolivia". Anais da Academia Brasileira de Ciências 91 (Suppl. 2): e20180750. doi:10.1590/0001-3765201920180750. PMID 31340218. 
  190. Thomas Servais; Borja Cascales-Miñana; Christopher J. Cleal; Philippe Gerrienne; David A.T. Harper; Mareike Neumann (2019). "Revisiting the Great Ordovician Diversification of land plants: Recent data and perspectives". Palaeogeography, Palaeoclimatology, Palaeoecology 534: Article 109280. doi:10.1016/j.palaeo.2019.109280. Bibcode2019PPP...53409280S. 
  191. Y. Datu Adiatma; Matthew R. Saltzman; Seth A. Young; Elizabeth M. Griffith; Nevin P. Kozik; Cole T. Edwards; Stephen A. Leslie; Alyssa M. Bancroft (2019). "Did early land plants produce a stepwise change in atmospheric oxygen during the Late Ordovician (Sandbian ~458 Ma)?". Palaeogeography, Palaeoclimatology, Palaeoecology 534: Article 109341. doi:10.1016/j.palaeo.2019.109341. Bibcode2019PPP...53409341A. 
  192. Zhenzhu Wan; Thomas J. Algeo; Patricia G. Gensel; Stephen E. Scheckler; William E. Stein; Walter L. Cressler III; Christopher M. Berry; Honghe Xu et al. (2019). "Environmental influences on the stable carbon isotopic composition of Devonian and Early Carboniferous land plants". Palaeogeography, Palaeoclimatology, Palaeoecology 531, Part A: Article 109100. doi:10.1016/j.palaeo.2019.02.025. Bibcode2019PPP...53109100W. 
  193. Borja Cascales‐Miñana; Philippe Steemans; Thomas Servais; Kevin Lepot; Philippe Gerrienne (2019). "An alternative model for the earliest evolution of vascular plants". Lethaia 52 (4): 445–453. doi:10.1111/let.12323. 
  194. William L. Crepet; Karl J. Niklas (2019). "The evolution of early vascular plant complexity". International Journal of Plant Sciences 180 (8): 800–810. doi:10.1086/705001. 
  195. Christine Strullu‐Derrien; Sylvain Bernard; Alan R. T. Spencer; Laurent Remusat; Paul Kenrick; Delphine Derrien (2019). "On the structure and chemistry of fossils of the earliest woody plant". Palaeontology 62 (6): 1015–1026. doi:10.1111/pala.12440. Bibcode2019Palgy..62.1015S. https://hal.archives-ouvertes.fr/hal-03021260/file/Strullu-Palaeontology-2019-HAL.pdf. 
  196. Nikole K. Bonacorsi; Andrew B. Leslie (2019). "Functional diversity and convergence in the evolution of plant reproductive structures". Annals of Botany 123 (1): 145–152. doi:10.1093/aob/mcy151. PMID 30107388. 
  197. Olga A. Orlova; Natalia Zavialova; Sergey Snigirevsky; Aleftina Jurina; Anna Lidskaya (2019). "Kossoviella timanica Petrosjan emend. from the Upper Devonian of North Timan: morphology and spore ultrastructure". Earth and Environmental Science Transactions of the Royal Society of Edinburgh 108 (4): 355–372. doi:10.1017/S1755691018000269. 
  198. Wilson A. Taylor (2019). "Spore wall ultrastructure in the Tournaisian lycopsid Oxroadia gracilis". International Journal of Plant Sciences 180 (6): 571–577. doi:10.1086/702942. 
  199. Alexander J. Hetherington; William A. DiMichele; Spencer G. Lucas; Sebastian Voigt (2019). "Tiny rhizomorphic rooting systems from the Early Permian Abo Formation of New Mexico, USA". International Journal of Plant Sciences 180 (6): 504–512. doi:10.1086/702759. https://ora.ox.ac.uk/objects/uuid:b8d8fbea-7fc9-4ac3-b6bc-5be3c47baef5. 
  200. Rodrigo Neregato; Jason Hilton (2019). "Reinvestigation of the enigmatic Carboniferous sphenophyte strobilus Cheirostrobus Scott and implications of in situ Retusotriletes spores". International Journal of Plant Sciences 180 (8): 811–833. doi:10.1086/704945. http://pure-oai.bham.ac.uk/ws/files/67744692/Neregato_Hilton_29_04_2019_to_Jason.pdf. 
  201. Hugues Terreaux de Felice; Anne-Laure Decombeix; Jean Galtier (2019). "Anatomy, affinities, and evolutionary implications of new silicified stems of Sphenophyllum Brongniart, 1828 from the early Carboniferous (Mississippian) of France and Germany". Geodiversitas 41 (14): 587–599. doi:10.5252/geodiversitas2019v41a14. http://sciencepress.mnhn.fr/en/periodiques/geodiversitas/41/14. 
  202. Andrew C. Rozefelds; Mary E. Dettmann; Anita K. Milroy; Andrew Hammond; H. Trevor Clifford; Merrick Ekins (2019). "The unexpected, recent history of horsetails in Australia". Australian Systematic Botany 32 (3): 255–268. doi:10.1071/SB18033. 
  203. James W. Clark; Mark N. Puttick; Philip C. J. Donoghue (2019). "Origin of horsetails and the role of whole-genome duplication in plant macroevolution". Proceedings of the Royal Society B: Biological Sciences 286 (1914): Article ID 20191662. doi:10.1098/rspb.2019.1662. PMID 31662084. 
  204. Sofie Lindström; Hamed Sanei; Bas van de Schootbrugge; Gunver K. Pedersen; Charles E. Lesher; Christian Tegner; Carmen Heunisch; Karen Dybkjær et al. (2019). "Volcanic mercury and mutagenesis in land plants during the end-Triassic mass extinction". Science Advances 5 (10): eaaw4018. doi:10.1126/sciadv.aaw4018. PMID 31681836. Bibcode2019SciA....5.4018L. 
  205. Keith Berry (2019). "Fern spore viability considered in relation to the duration of the Cretaceous-Paleogene (K-Pg) impact winter. A contribution to the discussion". Acta Palaeobotanica 59 (1): 19–25. doi:10.2478/acpa-2019-0008. 
  206. Yuangao Qu; Nicola McLoughlin; Mark. A. van Zuilen; Martin Whitehouse; Anders Engdahl; Vivi Vajda (2019). "Evidence for molecular structural variations in the cytoarchitectures of a Jurassic plant". Geology 47 (4): 325–329. doi:10.1130/G45725.1. Bibcode2019Geo....47..325Q. 
  207. Candela Blanco-Moreno; Bernard Gomez; Jesús Marugán-Lobón; Véronique Daviero-Gomez; Ángela D. Buscalioni (2019). "A novel approach for the metric analysis of fern fronds: Growth and architecture of the Mesozoic fern Weichselia reticulata in the light of modern ferns". PLOS ONE 14 (6): e0219192. doi:10.1371/journal.pone.0219192. PMID 31247026. Bibcode2019PLoSO..1419192B. 
  208. Cunlin Xin; Jingjing Wang; Luhan Wang; Yamei Zhang (2019). "Numerical taxonomy and Bayes discriminant analysis on 42 fossil species in Dicksoniaceae from China". Acta Geologica Sinica (English Edition) 93 (1): 183–198. doi:10.1111/1755-6724.13777. http://www.geojournals.cn/dzxben/ch/reader/view_abstract.aspx?file_no=2019endzxb01013&flag=1. 
  209. Cong‐Li Xu; Tao Su; Jian Huang; Yong‐Jiang Huang; Shu‐Feng Li; Yi‐Shan Zhao; Zhe‐Kun Zhou (2019). "Occurrence of Christella (Thelypteridaceae) in Southwest China and its indications of the paleoenvironment of the Qinghai–Tibetan Plateau and adjacent areas". Journal of Systematics and Evolution 57 (2): 169–179. doi:10.1111/jse.12452. 
  210. Anuradha Tewari; Ashalata D'Rozario; Sharmila Bhattacharya; Ahinsuk Barua; Meghma Bera; Subir Bera; Suryendu Dutta (2019). "Biomarker signatures of the iconic Glossopteris plant". Palaeogeography, Palaeoclimatology, Palaeoecology 531, Part B: Article 108887. doi:10.1016/j.palaeo.2018.08.001. Bibcode2019PPP...53108887T. 
  211. Anju Saxena; Kamal Jeet Singh; Christopher J. Cleal; Shaila Chandra; Shreerup Goswami; Husain Shabbar (2019). "Development of the Glossopteris flora and its end Permian demise in the Tatapani–Ramkola Coalfield, Son–Mahanadi Basin, India". Geological Journal 54 (4): 2472–2494. doi:10.1002/gj.3307. 
  212. Stephen Mcloughlin; Rose Prevec (2019). "The architecture of Permian glossopterid ovuliferous reproductive organs". Alcheringa: An Australasian Journal of Palaeontology 43 (4): 480–510. doi:10.1080/03115518.2019.1659852. Bibcode2019Alch...43..480M. http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-3571. 
  213. Kathryn Edwina Hill; Robert Stephen Hill; Jennifer Robyn Watling (2019). "Pinnule and stomatal size and stomatal density of living and fossil Bowenia and Eobowenia specimens give insight into physiology during Cretaceous and Eocene paleoclimates". International Journal of Plant Sciences 180 (4): 323–336. doi:10.1086/702643. https://e-space.mmu.ac.uk/623065/7/Pinnule%20and%20stomatal%20size%20and%20stomatal%20density%20of%20living%20and%20fossil%20bowenia.pdf. 
  214. Qing-Min Meng; Conrad C. Labandeira; Qiao-Ling Ding; Dong Ren (2019). "The natural history of oviposition on a ginkgophyte fruit from the Middle Jurassic of northeastern China". Insect Science 26 (1): 171–179. doi:10.1111/1744-7917.12506. PMID 28737833. 
  215. Atsushi Yabe; Eunkyoung Jeong; Kyungsik Kim; Kazuhiko Uemura (2019). "Oligocene–Neogene fossil history of Asian endemic conifer genera in Japan and Korea". Journal of Systematics and Evolution 57 (2): 114–128. doi:10.1111/jse.12445. 
  216. Gabriela Gleiser; Karina L. Speziale; Sergio A. Lambertucci; Fernando Hiraldo; José L. Tella; Marcelo A. Aizen (2019). "Uncoupled evolution of male and female cone sizes in an ancient conifer lineage". International Journal of Plant Sciences 180 (1): 72–80. doi:10.1086/700580. 
  217. Yan Wu; Jian‐Hua Jin; Nan Li; Hui‐Min He; Ting Chen; Xiao‐Yan Liu (2019). "Early Oligocene Calocedrus (Cupressaceae) from the Maoming Basin, South China, and its paleogeographic and paleoclimatic implications". Journal of Systematics and Evolution 57 (2): 142–152. doi:10.1111/jse.12424. 
  218. Li Wang; Lutz Kunzmann; Tao Su; Yao-Wu Xing; Shi-Tao Zhang; Yu-Qing Wang; Zhe-Kun Zhou (2019). "The disappearance of Metasequoia (Cupressaceae) after the middle Miocene in Yunnan, Southwest China: Evidences for evolutionary stasis and intensification of the Asian monsoon". Review of Palaeobotany and Palynology 264: 64–74. doi:10.1016/j.revpalbo.2018.12.007. Bibcode2019RPaPa.264...64W. 
  219. Marc Philippe; Maxim Afonin; Sylvain Delzon; Gregory J. Jordan; Kazuo Terada; Mélanie Thiébaut (2019). "A paleobiogeographical scenario for the Taxaceae based on a revised fossil wood record and embolism resistance". Review of Palaeobotany and Palynology 263: 147–158. doi:10.1016/j.revpalbo.2019.01.003. Bibcode2019RPaPa.263..147P. 
  220. Birgit Niebuhr (2019). "From animal to plant kingdom: the alleged sponge Siphonia bovista Geinitz from the Cretaceous of Saxony (Germany) in fact represents internal moulds of the cone-like plant fossil Dammarites albens Presl in Sternberg". Bulletin of Geosciences 94 (2): 221–234. doi:10.3140/bull.geosci.1733. 
  221. Paula J. Rudall; Richard M. Bateman (2019). "Leaf surface development and the plant fossil record: stomatal patterning in Bennettitales". Biological Reviews 94 (3): 1179–1194. doi:10.1111/brv.12497. PMID 30714286. 
  222. Boglárka Erdei; Mario Coiro; Ian Miller; Kirk R. Johnson; M. Patrick Griffith; Vickie Murphy (2019). "First cycad seedling foliage from the fossil record and inferences for the Cenozoic evolution of cycads". Biology Letters 15 (7): Article ID 20190114. doi:10.1098/rsbl.2019.0114. PMID 31288679. 
  223. Mario Coiro; James A. Doyle; Jason Hilton (2019). "How deep is the conflict between molecular and fossil evidence on the age of angiosperms?". New Phytologist 223 (1): 83–99. doi:10.1111/nph.15708. PMID 30681148. 
  224. Hong-Tao Li; Ting-Shuang Yi; Lian-Ming Gao; Peng-Fei Ma; Ting Zhang; Jun-Bo Yang; Matthew A. Gitzendanner; Peter W. Fritsch et al. (2019). "Origin of angiosperms and the puzzle of the Jurassic gap". Nature Plants 5 (5): 461–470. doi:10.1038/s41477-019-0421-0. PMID 31061536. 
  225. Else Marie Friis; Peter R. Crane; Kaj Raunsgaard Pedersen (2019). "The endothelium in seeds of early angiosperms". New Phytologist 224 (4): 1419–1424. doi:10.1111/nph.16024. PMID 31240716. 
  226. Kelly K. S. Matsunaga; Steven R. Manchester; Rashmi Srivastava; Dashrath K. Kapgate; Selena Y. Smith (2019). "Fossil palm fruits from India indicate a Cretaceous origin of Arecaceae tribe Borasseae". Botanical Journal of the Linnean Society 190 (3): 260–280. doi:10.1093/botlinnean/boz019. 
  227. Yong‐Jiang Huang; Hai Zhu; Arata Momohara; Lin‐Bo Jia; Zhe‐Kun Zhou (2019). "Fruit fossils of Rosoideae (Rosaceae) from the late Pliocene of northwestern Yunnan, Southwest China". Journal of Systematics and Evolution 57 (2): 180–189. doi:10.1111/jse.12443. 
  228. He Xu; Tao Su; Zhe‐Kun Zhou (2019). "Leaf and infructescence fossils of Alnus (Betulaceae) from the late Eocene of the southeastern Qinghai–Tibetan Plateau". Journal of Systematics and Evolution 57 (2): 105–113. doi:10.1111/jse.12463. 
  229. Carina Hoorn; Raymond van der Ham; Felipe de la Parra; Sonia Salamanca; Hans ter Steege; Hannah Banks; Wim Star; Bertie Joan van Heuven et al. (2019). "Going north and south: The biogeographic history of two Malvaceae in the wake of Neogene Andean uplift and connectivity between the Americas". Review of Palaeobotany and Palynology 264: 90–109. doi:10.1016/j.revpalbo.2019.01.010. Bibcode2019RPaPa.264...90H. http://repositorio.ikiam.edu.ec:8080/jspui/handle/RD_IKIAM/145. Retrieved 2022-02-07. 
  230. Jordan B. Bemmels; L. Lacey Knowles; Christopher W. Dick (2019). "Genomic evidence of survival near ice sheet margins for some, but not all, North American trees". Proceedings of the National Academy of Sciences of the United States of America 116 (17): 8431–8436. doi:10.1073/pnas.1901656116. PMID 30962371. Bibcode2019PNAS..116.8431B. 
  231. Karolin Moraweck; Michaela Grein; Wilfried Konrad; Jiří Kvaček; Johanna Kova-Eder; Christoph Neinhuis; Christopher Traiser; Lutz Kunzmann (2019). "Leaf traits of long-ranging Paleogene species and their relationship with depositional facies, climate and atmospheric CO2 level". Palaeontographica Abteilung B 298 (4–6): 93–172. doi:10.1127/palb/2019/0062. Bibcode2019PalAB.298...93M. 
  232. Steven R. Manchester; Margaret E. Collinson (2019). "Fruit morphology, anatomy and relationships of the type species of Mastixicarpum and Eomastixia (Cornales) from the late Eocene of Hordle, southern England". Acta Palaeobotanica 59 (1): 51–67. doi:10.2478/acpa-2019-0006. 
  233. Carlos A. Góis-Marques; Ria L. Mitchell; Lea de Nascimento; José María Fernández-Palacios; José Madeira; Miguel Menezes de Sequeira (2019). "Eurya stigmosa (Theaceae), a new and extinct record for the Calabrian stage of Madeira Island (Portugal): 40Ar/39Ar dating, palaeoecological and oceanic island palaeobiogeographical implications". Quaternary Science Reviews 206: 129–140. doi:10.1016/j.quascirev.2019.01.008. Bibcode2019QSRv..206..129G. 
  234. Mauro G. Passalia; Nicolás Caviglia; Ezequiel I. Vera (2019). "Lithraea australis (Berry) comb. nov. (Anacardiaceae) from the upper section of Ñirihuau Formation (middle Miocene), Patagonia". Review of Palaeobotany and Palynology 266: 1–11. doi:10.1016/j.revpalbo.2019.04.003. Bibcode2019RPaPa.266....1P. http://rid.unrn.edu.ar/handle/20.500.12049/6969. 
  235. Mélanie Tanrattana; Jean-François Barczi; Anne-Laure Decombeix; Brigitte Meyer-Berthaud; Jonathan Wilson (2019). "A new approach for modelling water transport in fossil plants". IAWA Journal 40 (3): 466–S4. doi:10.1163/22941932-40190243. 
  236. Man Lu; YueHan Lu; Takehito Ikejiri; Nicholas Hogancamp; Yongge Sun; Qihang Wu; Richard Carroll; Ibrahim Çemen et al. (2019). "Geochemical evidence of first forestation in the southernmost Euramerica from Upper Devonian (Famennian) black shales". Scientific Reports 9 (1): Article number 7581. doi:10.1038/s41598-019-43993-y. PMID 31110279. Bibcode2019NatSR...9.7581L. 
  237. Nikole K. Bonacorsi; Andrew B. Leslie (2019). "Sporangium position, branching architecture, and the evolution of reproductive morphology in Devonian plants". International Journal of Plant Sciences 180 (6): 493–503. doi:10.1086/702938. 
  238. Gustavo Correa; Silvia N. Césari (2019). "Revision of the first Carboniferous palaeofloristic locality discovered in Argentina". Acta Palaeobotanica 59 (1): 3–17. doi:10.2478/acpa-2019-0007. 
  239. Hendrik Nowak; Elke Schneebeli-Hermann; Evelyn Kustatscher (2019). "No mass extinction for land plants at the Permian–Triassic transition". Nature Communications 10 (1): Article number 384. doi:10.1038/s41467-018-07945-w. PMID 30674875. Bibcode2019NatCo..10..384N. 
  240. Christopher R. Fielding; Tracy D. Frank; Stephen McLoughlin; Vivi Vajda; Chris Mays; Allen P. Tevyaw; Arne Winguth; Cornelia Winguth et al. (2019). "Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis". Nature Communications 10 (1): Article number 385. doi:10.1038/s41467-018-07934-z. PMID 30674880. Bibcode2019NatCo..10..385F. 
  241. Abdalla M. B. Abu Hamad; Bety Al-Saqarat; Cátia V. Gonçalves; Rafael Spiekermann; André Jasper; Dieter Uhl (2019). "The first record of Dicroidium from the Triassic palaeotropics based on dispersed cuticles from the Anisian Mukheiris Formation of Jordan". PalZ 93 (3): 487–498. doi:10.1007/s12542-019-00470-1. 
  242. Sam M. Slater; Richard J. Twitchett; Silvia Danise; Vivi Vajda (2019). "Substantial vegetation response to Early Jurassic global warming with impacts on oceanic anoxia". Nature Geoscience 12 (6): 462–467. doi:10.1038/s41561-019-0349-z. Bibcode2019NatGe..12..462S. http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-3420. 
  243. Stephen McLoughlin; Christian Pott (2019). "Plant mobility in the Mesozoic: Disseminule dispersal strategies of Chinese and Australian Middle Jurassic to Early Cretaceous plants". Palaeogeography, Palaeoclimatology, Palaeoecology 515: 47–69. doi:10.1016/j.palaeo.2017.12.036. Bibcode2019PPP...515...47M. http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-3424. 
  244. Maria Patricia Velasco-de León; Erika L. Ortiz-Martínez; Diego E. Lozano-Carmona; Miguel A. Flores-Barragan (2019). "Paleofloristic comparison of the Ayuquila and Otlaltepec basins, Middle Jurassic, Oaxaca, Mexico". Journal of South American Earth Sciences 93: 1–13. doi:10.1016/j.jsames.2019.04.008. Bibcode2019JSAES..93....1V. 
  245. Zikun Jiang; Benpei Liu; Yongdong Wang; Min Huang; Tom Kapitany; Ning Tian; Yong Cao; Yuanzheng Lu et al. (2019). "Tree ring phototropism and implications for the rotation of the North China Block". Scientific Reports 9 (1): Article number 4856. doi:10.1038/s41598-019-41339-2. PMID 30890749. Bibcode2019NatSR...9.4856J. 
  246. Marcelo de Araujo Carvalho; Peter Bengtson; Cecília Cunha Lana; Natália de Paula Sá; Gustavo Santiago; Michele Cardoso da Silva Giannerini (2019). "Late Aptian (Early Cretaceous) dry–wet cycles and their effects on vegetation in the South Atlantic: Palynological evidence". Cretaceous Research 100: 172–183. doi:10.1016/j.cretres.2019.03.021. Bibcode2019CrRes.100..172C. 
  247. Xiaodan Lin; Conrad C. Labandeira; Qiaoling Ding; Qingmin Meng; Dong Ren (2019). "Exploiting nondietary resources in deep time: patterns of oviposition on mid-Mesozoic plants from northeastern China". International Journal of Plant Sciences 180 (5): 411–457. doi:10.1086/702641. 
  248. Edilson Bezerra dos Santos Filho; Karen Adami-Rodrigues; Flaviana Jorge de Lima; Renan Alfredo Machado Bantim; Torsten Wappler; Antônio Álamo Feitosa Saraiva (2019). "Evidence of plant–insect interaction in the Early Cretaceous Flora from the Crato Formation, Araripe Basin, Northeast Brazil". Historical Biology: An International Journal of Paleobiology 31 (7): 926–937. doi:10.1080/08912963.2017.1408611. 
  249. Pablo Estévez-Gallardo; Luis M. Sender; Eduardo Mayoral; José B. Diez (2019). "First evidence of insect herbivory on Albian aquatic angiosperms of the NE Iberian Peninsula". Earth and Environmental Science Transactions of the Royal Society of Edinburgh 108 (4): 429–435. doi:10.1017/S1755691018000555. 
  250. Alexandre V. Demers‐Potvin; Hans C. E. Larsson (2019). "Palaeoclimatic reconstruction for a Cenomanian‐aged angiosperm flora near Schefferville, Labrador". Palaeontology 62 (6): 1027–1048. doi:10.1111/pala.12444. https://escholarship.mcgill.ca/concern/articles/wh246x57f. 
  251. Heather V. Graham; Fabiany Herrera; Carlos Jaramillo; Scott L. Wing; Katherine H. Freeman (2019). "Canopy structure in Late Cretaceous and Paleocene forests as reconstructed from carbon isotope analyses of fossil leaves". Geology 47 (10): 977–981. doi:10.1130/G46152.1. Bibcode2019Geo....47..977G. 
  252. Andrew G. Flynn; Daniel J. Peppe (2019). "Early Paleocene tropical forest from the Ojo Alamo Sandstone, San Juan Basin, New Mexico, USA". Paleobiology 45 (4): 612–635. doi:10.1017/pab.2019.24. Bibcode2019Pbio...45..612F. 
  253. Olesya V. Bondarenko; Nadezhda I. Blokhina; Torsten Utescher (2019). "Major plant biome changes in the Primorye Region (Far East of Russia) during the Paleogene". Botanica Pacifica 8 (1): 3–18. doi:10.17581/bp.2019.08106. 
  254. Lauren E. Azevedo Schmidt; Regan E. Dunn; Jason Mercer; Marieke Dechesne; Ellen D. Currano (2019). "Plant and insect herbivore community variation across the Paleocene–Eocene boundary in the Hanna Basin, southeastern Wyoming". PeerJ 7: e7798. doi:10.7717/peerj.7798. PMID 31637117. 
  255. Margret Steinthorsdottir; Vivi Vajda; Mike Pole; Guy Holdgate (2019). "Moderate levels of Eocene pCO2 indicated by Southern Hemisphere fossil plant stomata". Geology 47 (10): 914–918. doi:10.1130/G46274.1. Bibcode2019Geo....47..914S. 
  256. Mike Pole (2019). "Early Eocene plant macrofossils from the Booval Basin, Dinmore, near Brisbane, Queensland". Palaeontologia Electronica 22 (3): Article number 22.3.60. doi:10.26879/922. 
  257. Anthony P. Jijina; Ellen D. Currano; Kurt Constenius (2019). "The paleobotany and paleoecology of the Eocene Herren beds of north-central Oregon, USA". PALAIOS 34 (9): 424–436. doi:10.2110/palo.2019.014. Bibcode2019Palai..34..424J. 
  258. Tao Su; Robert A. Spicer; Shi-Hu Li; He Xu; Jian Huang; Sarah Sherlock; Yong-Jiang Huang; Shu-Feng Li et al. (2019). "Uplift, climate and biotic changes at the Eocene–Oligocene transition in south-eastern Tibet". National Science Review 6 (3): 495–504. doi:10.1093/nsr/nwy062. PMID 34691898. PMC 8291530. http://oro.open.ac.uk/55506/1/55506.pdf. 
  259. Keke Ai; Gongle Shi; Kexin Zhang; Junliang Ji; Bowen Song; Tianyi Shen; Shuangxing Guo (2019). "The uppermost Oligocene Kailas flora from southern Tibetan Plateau and its implications for the uplift history of the southern Lhasa terrane". Palaeogeography, Palaeoclimatology, Palaeoecology 515: 143–151. doi:10.1016/j.palaeo.2018.04.017. Bibcode2019PPP...515..143A. 
  260. Svetlana Popova; Torsten Utescher; Dmitry Gromyko; Volker Mosbrugger; Louis François (2019). "Dynamics and evolution of Turgay‐type vegetation in Western Siberia throughout the early Oligocene to earliest Miocene—a study based on diversity of plant functional types in the carpological record". Journal of Systematics and Evolution 57 (2): 129–141. doi:10.1111/jse.12420. 
  261. Qijia Li; Tao Su; Yusheng (Christopher) Liu; Cheng Quan (2019). "Oligocene plant ecological strategies in low-latitude Asia unraveled by leaf economics". Journal of Asian Earth Sciences 182: Article 103933. doi:10.1016/j.jseaes.2019.103933. Bibcode2019JAESc.18203933L. 
  262. Daniel M. McNair; Debra Z. Stults; Brian Axsmith; Mac H. Alford; James E. Starnes (2019). "Preliminary investigation of a diverse megafossil floral assemblage from the middle Miocene of southern Mississippi, USA". Palaeontologia Electronica 22 (2): Article number 22.2.40. doi:10.26879/906. 
  263. Ethan G. Hyland; Nathan D. Sheldon; Selena Y. Smith; Caroline A.E. Strömberg (2019). "Late Miocene rise and fall of C4 grasses in the western United States linked to aridification and uplift". GSA Bulletin 131 (1–2): 224–234. doi:10.1130/B32009.1. Bibcode2019GSAB..131..224H. 
  264. Angelica Feurdean; Iuliana Vasiliev (2019). "The contribution of fire to the late Miocene spread of grasslands in eastern Eurasia (Black Sea region)". Scientific Reports 9 (1): Article number 6750. doi:10.1038/s41598-019-43094-w. PMID 31043665. Bibcode2019NatSR...9.6750F. 
  265. Pratigya J. Polissar; Cassaundra Rose; Kevin T. Uno; Samuel R. Phelps; Peter deMenocal (2019). "Synchronous rise of African C4 ecosystems 10 million years ago in the absence of aridification". Nature Geoscience 12 (8): 657–660. doi:10.1038/s41561-019-0399-2. Bibcode2019NatGe..12..657P. 
  266. Anne-Marie Lézine; Kenji Izumi; Masa Kageyama; Gaston Achoundong (2019). "A 90,000-year record of Afromontane forest responses to climate change". Science 363 (6423): 177–181. doi:10.1126/science.aav6821. PMID 30630932. Bibcode2019Sci...363..177L. 
  267. Christopher M. Wurster; Hamdi Rifai; Bin Zhou; Jordahna Haig; Michael I. Bird (2019). "Savanna in equatorial Borneo during the late Pleistocene". Scientific Reports 9 (1): Article number 6392. doi:10.1038/s41598-019-42670-4. PMID 31024024. Bibcode2019NatSR...9.6392W. 
  268. Fidel Hernández; Carlos Ríos; Humberto L. Perotto-Baldivieso (2019). "Evolutionary history of herbivory in the Patagonian steppe: The role of climate, ancient megafauna, and guanaco". Quaternary Science Reviews 220: 279–290. doi:10.1016/j.quascirev.2019.07.014. Bibcode2019QSRv..220..279H. 
  269. M. C. Stahlschmidt; T. C. Collin; D. M. Fernandes; G. Bar-Oz; A. Belfer-Cohen; Z. Gao; N. Jakeli; Z. Matskevich et al. (2019). "Ancient mammalian and plant DNA from late Quaternary stalagmite layers at Solkota cave, Georgia". Scientific Reports 9 (1): Article number 6628. doi:10.1038/s41598-019-43147-0. PMID 31036834. Bibcode2019NatSR...9.6628S. 
  270. William E. Stein; Christopher M. Berry; Jennifer L. Morris; Linda VanAller Hernick; Frank Mannolini; Charles Ver Straeten; Ed Landing; John E.A. Marshall et al. (2019). "Mid-Devonian Archaeopteris Roots Signal Revolutionary Change in Earliest Fossil Forests". Current Biology 30 (3): 421–431.e2. doi:10.1016/j.cub.2019.11.067. PMID 31866369.