Software:Sim4Life

From HandWiki
Sim4Life
Developer(s)ZMT Zurich MedTech AG
Stable release
V8.0 / March 14, 2024; 7 days ago (2024-03-14)
TypeComputer-aided design
Websitezmt.swiss/sim4life/

Sim4Life is a computer-aided-design-based simulation platform developed by the Foundation for Research on Information Technologies in Society (IT'IS) with funding from Innosuisse[1][2], formerly known as CTI, the Swiss federal innovation agency. The platform combines computational human phantoms with physics solvers and models of biological tissues and medical devices. Sim4Life – marketed by IT'IS partner ZMT Zurich MedTech AG (ZMT) and SPECTRAtech[3] – is used by medical researchers to investigate, for example, safety aspects of magnetic resonance imaging,[4][5][6] non-invasive methods of brain stimulation,[7][8] and transcranial focused ultrasound.[9][10] The current version of Sim4Life, V8.0, is also available as Sim4Life.web, which is integrated with the desktop version and implemented in the cloud for use without installation.

S4Llite is a web version of Sim4Life free-of-charge for students to facilitate team-learning and online collaboration on limited size projects with classmates and teachers. S4Llite is powered by o²S²PARC[11], which was developed as part of the 'Stimulating Peripheral Activity to Relieve Conditions' (SPARC)[12] program of the National Institutes of Health Common Fund.

References

  1. "Development of a Multiphysics Simulation Platform for Computational BioMed and Life Sciences (Sim4Life)". 27 November 2014. https://www.aramis.admin.ch/Grunddaten/?ProjectID=28397. 
  2. "R and D project : S4L-CAPITALIS - Extension of the Sim4Life Platform (S4L) for Analysis and Optimization of the Neurovascular and Neurological Devices and Treatments in the Head". 1 June 2015. https://www.aramis.admin.ch/Texte/?ProjectID=34223&Sprache=en-US. 
  3. "Sim4Life T-NEURO | Neuronal Tissue Models". 2024. https://www.spectratech.gr/en/product/51383/Sim4Life_T-NEURO?path=00. 
  4. De Buck, Matthijs H. S.; Jezzard, Peter; Jeong, Hongbae; Hess, Aaron T. (2021). "An investigation into the minimum number of tissue groups required for 7T in-silico parallel transmit electromagnetic safety simulations in the human head". Magnetic Resonance in Medicine 85 (2): 1114–1122. doi:10.1002/mrm.28467. PMID 32845034. https://onlinelibrary.wiley.com/doi/full/10.1002/mrm.28467. 
  5. Jeong, H.; Ntolkeras, G.; Alhilani, M.; Atefi, S. R.; Zöllei, L.; Fujimoto, K.; Pourvaziri, A.; Lev, M. H. et al. (13 January 2021). "Development, validation, and pilot MRI safety study of a high-resolution, open source, whole body pediatric numerical simulation model". PLOS ONE 16 (1): e0241682. doi:10.1371/journal.pone.0241682. PMID 33439896. Bibcode2021PLoSO..1641682J. 
  6. Meliadò, Ettore Flavio; Sbrizzi, Alessandro; Van Den Berg, Cornelis A. T.; Luijten, Peter R.; Raaijmakers, Alexander J. E. (2021). "Real-time assessment of potential peak local specific absorption rate value without phase monitoring: Trigonometric maximization method for worst-case local specific absorption rate determination". Magnetic Resonance in Medicine 85 (6): 3420–3433. doi:10.1002/mrm.28635. PMID 33350525. 
  7. Fiocchi, Serena; Chiaramello, Emma; Marrella, Alessandra; Bonato, Marta; Parazzini, Marta; Ravazzani, Paolo (23 September 2022). "Modelling of magnetoelectric nanoparticles for non-invasive brain stimulation: a computational study". Journal of Neural Engineering 19 (5): 056020. doi:10.1088/1741-2552/ac9085. PMID 36075197. Bibcode2022JNEng..19e6020F. https://iopscience.iop.org/article/10.1088/1741-2552/ac9085/pdf. 
  8. Gudvangen, Emily; Kim, Vitalii; Novickij, Vitalij; Battista, Federico; Pakhomov, Andrei G. (2 February 2022). "Electroporation and cell killing by milli- to nanosecond pulses and avoiding neuromuscular stimulation in cancer ablation". Scientific Reports 12 (1): 1763. doi:10.1038/s41598-022-04868-x. PMID 35110567. Bibcode2022NatSR..12.1763G. 
  9. Truong, D. Q.; Thomas, C.; Hampstead, B. M.; Datta, A. (February 3, 2022). "Comparison of Transcranial Focused Ultrasound and Transcranial Pulse Stimulation for Neuromodulation: A Computational Study". Neuromodulation: Technology at the Neural Interface 25 (4): 606–613. doi:10.1016/j.neurom.2021.12.012. PMID 35125300. https://www.neuromodulationjournal.org/article/S1094-7159(21)06990-7/fulltext. 
  10. Huang, Y.; Wen, P.; Song, B.; Li, Y. (August 2022). "Numerical investigation of the energy distribution of Low-intensity transcranial focused ultrasound neuromodulation for hippocampus". Ultrasonics 124: 106724. doi:10.1016/j.ultras.2022.106724. PMID 35299039. https://www.sciencedirect.com/science/article/abs/pii/S0041624X22000373. 
  11. Osanlouy, Mahyar; Bandrowski, Anita; De Bono, Bernard; Brooks, David; Cassarà, Antonino M.; Christie, Richard; Ebrahimi, Nazanin; Gillespie, Tom et al. (24 June 2021). "The SPARC DRC: Building a Resource for the Autonomic Nervous System Community". Frontiers in Physiology 12: 693735. doi:10.3389/fphys.2021.693735. PMID 34248680. 
  12. "The SPARC computational modeling platform o²S²PARC now powers ZMT's S4Llite". 15 February 2023. https://sparc.science/news-and-events/news/5U9a8F2TgWKDiFH6Cyw51i. 

External links[edit]

ZMT Zurich MedTech AG website, Sim4Life webpage

ZMT Zurich MedTech AG website, S4Llite webpage