Partially ordered ring

From HandWiki
Short description: Ring with a compatible partial order

In abstract algebra, a partially ordered ring is a ring (A, +, ·), together with a compatible partial order, that is, a partial order [math]\displaystyle{ \,\leq\, }[/math] on the underlying set A that is compatible with the ring operations in the sense that it satisfies: [math]\displaystyle{ x \leq y \text{ implies } x + z \leq y + z }[/math] and [math]\displaystyle{ 0 \leq x \text{ and } 0 \leq y \text{ imply that } 0 \leq x \cdot y }[/math] for all [math]\displaystyle{ x, y, z\in A }[/math].[1] Various extensions of this definition exist that constrain the ring, the partial order, or both. For example, an Archimedean partially ordered ring is a partially ordered ring [math]\displaystyle{ (A, \leq) }[/math] where [math]\displaystyle{ A }[/math]'s partially ordered additive group is Archimedean.[2]

An ordered ring, also called a totally ordered ring, is a partially ordered ring [math]\displaystyle{ (A, \leq) }[/math] where [math]\displaystyle{ \,\leq\, }[/math] is additionally a total order.[1][2]

An l-ring, or lattice-ordered ring, is a partially ordered ring [math]\displaystyle{ (A, \leq) }[/math] where [math]\displaystyle{ \,\leq\, }[/math] is additionally a lattice order.

Properties

The additive group of a partially ordered ring is always a partially ordered group.

The set of non-negative elements of a partially ordered ring (the set of elements [math]\displaystyle{ x }[/math] for which [math]\displaystyle{ 0 \leq x, }[/math] also called the positive cone of the ring) is closed under addition and multiplication, that is, if [math]\displaystyle{ P }[/math] is the set of non-negative elements of a partially ordered ring, then [math]\displaystyle{ P + P \subseteq P }[/math] and [math]\displaystyle{ P \cdot P \subseteq P. }[/math] Furthermore, [math]\displaystyle{ P \cap (-P) = \{0\}. }[/math]

The mapping of the compatible partial order on a ring [math]\displaystyle{ A }[/math] to the set of its non-negative elements is one-to-one;[1] that is, the compatible partial order uniquely determines the set of non-negative elements, and a set of elements uniquely determines the compatible partial order if one exists.

If [math]\displaystyle{ S \subseteq A }[/math] is a subset of a ring [math]\displaystyle{ A, }[/math] and:

  1. [math]\displaystyle{ 0 \in S }[/math]
  2. [math]\displaystyle{ S \cap (-S) = \{0\} }[/math]
  3. [math]\displaystyle{ S + S \subseteq S }[/math]
  4. [math]\displaystyle{ S \cdot S \subseteq S }[/math]

then the relation [math]\displaystyle{ \,\leq\, }[/math] where [math]\displaystyle{ x \leq y }[/math] if and only if [math]\displaystyle{ y - x \in S }[/math] defines a compatible partial order on [math]\displaystyle{ A }[/math] (that is, [math]\displaystyle{ (A, \leq) }[/math] is a partially ordered ring).[2]

In any l-ring, the absolute value [math]\displaystyle{ |x| }[/math] of an element [math]\displaystyle{ x }[/math] can be defined to be [math]\displaystyle{ x \vee(-x), }[/math] where [math]\displaystyle{ x \vee y }[/math] denotes the maximal element. For any [math]\displaystyle{ x }[/math] and [math]\displaystyle{ y, }[/math] [math]\displaystyle{ |x \cdot y| \leq |x| \cdot |y| }[/math] holds.[3]

f-rings

An f-ring, or Pierce–Birkhoff ring, is a lattice-ordered ring [math]\displaystyle{ (A, \leq) }[/math] in which [math]\displaystyle{ x \wedge y = 0 }[/math][4] and [math]\displaystyle{ 0 \leq z }[/math] imply that [math]\displaystyle{ zx \wedge y = xz \wedge y = 0 }[/math] for all [math]\displaystyle{ x, y, z \in A. }[/math] They were first introduced by Garrett Birkhoff and Richard S. Pierce in 1956, in a paper titled "Lattice-ordered rings", in an attempt to restrict the class of l-rings so as to eliminate a number of pathological examples. For example, Birkhoff and Pierce demonstrated an l-ring with 1 in which 1 is not positive, even though it is a square.[2] The additional hypothesis required of f-rings eliminates this possibility.

Example

Let [math]\displaystyle{ X }[/math] be a Hausdorff space, and [math]\displaystyle{ \mathcal{C}(X) }[/math] be the space of all continuous, real-valued functions on [math]\displaystyle{ X. }[/math] [math]\displaystyle{ \mathcal{C}(X) }[/math] is an Archimedean f-ring with 1 under the following pointwise operations: [math]\displaystyle{ [f + g](x) = f(x) + g(x) }[/math] [math]\displaystyle{ [fg](x) = f(x) \cdot g(x) }[/math] [math]\displaystyle{ [f \wedge g](x) = f(x) \wedge g(x). }[/math][2]

From an algebraic point of view the rings [math]\displaystyle{ \mathcal{C}(X) }[/math] are fairly rigid. For example, localisations, residue rings or limits of rings of the form [math]\displaystyle{ \mathcal{C}(X) }[/math] are not of this form in general. A much more flexible class of f-rings containing all rings of continuous functions and resembling many of the properties of these rings is the class of real closed rings.

Properties

  • A direct product of f-rings is an f-ring, an l-subring of an f-ring is an f-ring, and an l-homomorphic image of an f-ring is an f-ring.[3]
  • [math]\displaystyle{ |xy| = |x||y| }[/math] in an f-ring.[3]
  • The category Arf consists of the Archimedean f-rings with 1 and the l-homomorphisms that preserve the identity.[5]
  • Every ordered ring is an f-ring, so every sub-direct union of ordered rings is also an f-ring. Assuming the axiom of choice, a theorem of Birkhoff shows the converse, and that an l-ring is an f-ring if and only if it is l-isomorphic to a sub-direct union of ordered rings.[2] Some mathematicians take this to be the definition of an f-ring.[3]

Formally verified results for commutative ordered rings

IsarMathLib, a library for the Isabelle theorem prover, has formal verifications of a few fundamental results on commutative ordered rings. The results are proved in the ring1 context.[6]

Suppose [math]\displaystyle{ (A, \leq) }[/math] is a commutative ordered ring, and [math]\displaystyle{ x, y, z \in A. }[/math] Then:

by
The additive group of [math]\displaystyle{ A }[/math] is an ordered group OrdRing_ZF_1_L4
[math]\displaystyle{ x \leq y \text{ if and only if } x - y \leq 0 }[/math] OrdRing_ZF_1_L7
[math]\displaystyle{ x \leq y }[/math] and [math]\displaystyle{ 0 \leq z }[/math] imply
[math]\displaystyle{ xz \leq yz }[/math] and [math]\displaystyle{ zx \leq zy }[/math]
OrdRing_ZF_1_L9
[math]\displaystyle{ 0 \leq 1 }[/math] ordring_one_is_nonneg
[math]\displaystyle{ |xy| = |x| |y| }[/math] OrdRing_ZF_2_L5
[math]\displaystyle{ |x+y| \leq |x| + |y| }[/math] ord_ring_triangle_ineq
[math]\displaystyle{ x }[/math] is either in the positive set, equal to 0 or in minus the positive set. OrdRing_ZF_3_L2
The set of positive elements of [math]\displaystyle{ (A, \leq) }[/math] is closed under multiplication if and only if [math]\displaystyle{ A }[/math] has no zero divisors. OrdRing_ZF_3_L3
If [math]\displaystyle{ A }[/math] is non-trivial ([math]\displaystyle{ 0 \neq 1 }[/math]), then it is infinite. ord_ring_infinite

See also

References

  1. 1.0 1.1 1.2 Anderson, F. W.. "Lattice-ordered rings of quotients". Canadian Journal of Mathematics 17: 434–448. doi:10.4153/cjm-1965-044-7. 
  2. 2.0 2.1 2.2 2.3 2.4 2.5 Johnson, D. G. (December 1960). "A structure theory for a class of lattice-ordered rings". Acta Mathematica 104 (3–4): 163–215. doi:10.1007/BF02546389. 
  3. 3.0 3.1 3.2 3.3 Henriksen, Melvin (1997). "A survey of f-rings and some of their generalizations". in W. Charles Holland and Jorge Martinez. Ordered Algebraic Structures: Proceedings of the Curaçao Conference Sponsored by the Caribbean Mathematics Foundation, June 23–30, 1995. the Netherlands: Kluwer Academic Publishers. pp. 1–26. ISBN 0-7923-4377-8. 
  4. [math]\displaystyle{ \wedge }[/math] denotes infimum.
  5. Hager, Anthony W.; Jorge Martinez (2002). "Functorial rings of quotients—III: The maximum in Archimedean f-rings". Journal of Pure and Applied Algebra 169: 51–69. doi:10.1016/S0022-4049(01)00060-3. 
  6. "IsarMathLib". http://www.nongnu.org/isarmathlib/IsarMathLib/document.pdf. Retrieved 2009-03-31. 

Further reading

  • Birkhoff, G.; R. Pierce (1956). "Lattice-ordered rings". Anais da Academia Brasileira de Ciências 28: 41–69. 
  • Gillman, Leonard; Jerison, Meyer Rings of continuous functions. Reprint of the 1960 edition. Graduate Texts in Mathematics, No. 43. Springer-Verlag, New York-Heidelberg, 1976. xiii+300 pp

External links