McKay conjecture

From HandWiki

In mathematics, specifically in the field of group theory, the McKay conjecture is a conjecture of equality between the number of irreducible complex characters of degree not divisible by a prime number [math]\displaystyle{ p }[/math] to that of the normalizer of a Sylow [math]\displaystyle{ p }[/math]-subgroup. It is named after Canadian mathematician John McKay.

Statement

Suppose [math]\displaystyle{ p }[/math] is a prime number, [math]\displaystyle{ G }[/math] is a finite group, and [math]\displaystyle{ P \leq G }[/math] is a Sylow [math]\displaystyle{ p }[/math]-subgroup. Define

[math]\displaystyle{ \textrm{Irr}_{p'}(G) := \{\chi \in \textrm{Irr}(G) : p \nmid \chi(1) \} }[/math]

where [math]\displaystyle{ \textrm{Irr}(G) }[/math] denotes the set of complex irreducible characters of the group [math]\displaystyle{ G }[/math]. The McKay conjecture claims the equality

[math]\displaystyle{ |\textrm{Irr}_{p'}(G)| = |\textrm{Irr}_{p'}(N_G(P))| }[/math]

where [math]\displaystyle{ N_G(P) }[/math] is the normalizer of [math]\displaystyle{ P }[/math] in [math]\displaystyle{ G }[/math].

References