Eells–Kuiper manifold

From HandWiki

In mathematics, an Eells–Kuiper manifold is a compactification of [math]\displaystyle{ \R^n }[/math] by a sphere of dimension [math]\displaystyle{ n/2 }[/math], where [math]\displaystyle{ n=2,4,8 }[/math], or [math]\displaystyle{ 16 }[/math]. It is named after James Eells and Nicolaas Kuiper. If [math]\displaystyle{ n=2 }[/math], the Eells–Kuiper manifold is diffeomorphic to the real projective plane [math]\displaystyle{ \mathbb{RP}^2 }[/math]. For [math]\displaystyle{ n\ge 4 }[/math] it is simply-connected and has the integral cohomology structure of the complex projective plane [math]\displaystyle{ \mathbb{CP}^2 }[/math] ([math]\displaystyle{ n = 4 }[/math]), of the quaternionic projective plane [math]\displaystyle{ \mathbb{HP}^2 }[/math] ([math]\displaystyle{ n = 8 }[/math]) or of the Cayley projective plane ([math]\displaystyle{ n = 16 }[/math]).

Properties

These manifolds are important in both Morse theory and foliation theory:

Theorem:[1] Let [math]\displaystyle{ M }[/math] be a connected closed manifold (not necessarily orientable) of dimension [math]\displaystyle{ n }[/math]. Suppose [math]\displaystyle{ M }[/math] admits a Morse function [math]\displaystyle{ f\colon M\to \R }[/math] of class [math]\displaystyle{ C^3 }[/math] with exactly three singular points. Then [math]\displaystyle{ M }[/math] is a Eells–Kuiper manifold.

Theorem:[2] Let [math]\displaystyle{ M^n }[/math] be a compact connected manifold and [math]\displaystyle{ F }[/math] a Morse foliation on [math]\displaystyle{ M }[/math]. Suppose the number of centers [math]\displaystyle{ c }[/math] of the foliation [math]\displaystyle{ F }[/math] is more than the number of saddles [math]\displaystyle{ s }[/math]. Then there are two possibilities:

  • [math]\displaystyle{ c=s+2 }[/math], and [math]\displaystyle{ M^n }[/math] is homeomorphic to the sphere [math]\displaystyle{ S^n }[/math],
  • [math]\displaystyle{ c=s+1 }[/math], and [math]\displaystyle{ M^n }[/math] is an Eells–Kuiper manifold, [math]\displaystyle{ n=2,4,8 }[/math] or [math]\displaystyle{ 16 }[/math].

See also

References