Conductor-discriminant formula

From HandWiki

In mathematics, the conductor-discriminant formula or Führerdiskriminantenproduktformel, introduced by Hasse (1926, 1930) for abelian extensions and by Artin (1931) for Galois extensions, is a formula calculating the relative discriminant of a finite Galois extension [math]\displaystyle{ L/K }[/math] of local or global fields from the Artin conductors of the irreducible characters [math]\displaystyle{ \mathrm{Irr}(G) }[/math] of the Galois group [math]\displaystyle{ G = G(L/K) }[/math].

Statement

Let [math]\displaystyle{ L/K }[/math] be a finite Galois extension of global fields with Galois group [math]\displaystyle{ G }[/math]. Then the discriminant equals

[math]\displaystyle{ \mathfrak{d}_{L/K} = \prod_{\chi \in \mathrm{Irr}(G)}\mathfrak{f}(\chi)^{\chi(1)}, }[/math]

where [math]\displaystyle{ \mathfrak{f}(\chi) }[/math] equals the global Artin conductor of [math]\displaystyle{ \chi }[/math].[1]

Example

Let [math]\displaystyle{ L = \mathbf{Q}(\zeta_{p^n})/\mathbf{Q} }[/math] be a cyclotomic extension of the rationals. The Galois group [math]\displaystyle{ G }[/math] equals [math]\displaystyle{ (\mathbf{Z}/p^n)^\times }[/math]. Because [math]\displaystyle{ (p) }[/math] is the only finite prime ramified, the global Artin conductor [math]\displaystyle{ \mathfrak{f}(\chi) }[/math] equals the local one [math]\displaystyle{ \mathfrak{f}_{(p)}(\chi) }[/math]. Because [math]\displaystyle{ G }[/math] is abelian, every non-trivial irreducible character [math]\displaystyle{ \chi }[/math] is of degree [math]\displaystyle{ 1 = \chi(1) }[/math]. Then, the local Artin conductor of [math]\displaystyle{ \chi }[/math] equals the conductor of the [math]\displaystyle{ \mathfrak{p} }[/math]-adic completion of [math]\displaystyle{ L^\chi = L^{\mathrm{ker}(\chi)}/\mathbf{Q} }[/math], i.e. [math]\displaystyle{ (p)^{n_p} }[/math], where [math]\displaystyle{ n_p }[/math] is the smallest natural number such that [math]\displaystyle{ U_{\mathbf{Q}_p}^{(n_p)} \subseteq N_{L^\chi_\mathfrak{p}/\mathbf{Q}_p}(U_{L^\chi_\mathfrak{p}}) }[/math]. If [math]\displaystyle{ p \gt 2 }[/math], the Galois group [math]\displaystyle{ G(L_\mathfrak{p}/\mathbf{Q}_p) = G(L/\mathbf{Q}_p) = (\mathbf{Z}/p^n)^\times }[/math] is cyclic of order [math]\displaystyle{ \varphi(p^n) }[/math], and by local class field theory and using that [math]\displaystyle{ U_{\mathbf{Q}_p}/U^{(k)}_{\mathbf{Q}_p} = (\mathbf{Z}/p^k)^\times }[/math] one sees easily that if [math]\displaystyle{ \chi }[/math] factors through a primitive character of [math]\displaystyle{ (\mathbf{Z}/p^i)^\times }[/math], then [math]\displaystyle{ \mathfrak{f}_{(p)}(\chi) = p^i }[/math] whence as there are [math]\displaystyle{ \varphi(p^i) - \varphi(p^{i-1}) }[/math] primitive characters of [math]\displaystyle{ (\mathbf{Z}/p^i)^\times }[/math] we obtain from the formula [math]\displaystyle{ \mathfrak{d}_{L/\mathbf{Q}} = (p^{\varphi(p^n)(n - 1/(p-1))}) }[/math], the exponent is

[math]\displaystyle{ \sum_{i = 0}^{n} (\varphi(p^i) - \varphi(p^{i-1}))i = n\varphi(p^n) - 1 - (p-1)\sum_{i=0}^{n-2}p^i = n\varphi(p^n) - p^{n-1}. }[/math]

Notes

  1. Neukirch 1999, VII.11.9.

References