Biography:Ji-Ping Huang

From HandWiki
Short description: Chinese theoretical physicist

Ji-Ping Huang (alternative spelling forms: J. P. Huang or Jiping Huang; simplified Chinese: 黄吉平;born 8 January 1977) is a Chinese theoretical physicist known for his invention of the concept of diffusion metamaterials.[1][2]

Education

Huang obtained a BSc and MSc from the Department of Physics at Soochow University, China, in 1998 and 2000, respectively. He earned his PhD from the Department of Physics at the Chinese University of Hong Kong, China, in 2003.[3][4]

Career

Huang was a postdoctoral researcher at the Max Planck Institute for Polymer Research, Germany, from 2003 to 2004. He then held the position of a Humboldt Research Fellow at the same institute from 2004 to 2005. In 2005, he assumed the role of a professor in the Department of Physics at Fudan University, China.[3][4]

Research

His research area encompasses thermodynamics, statistical physics, and complex systems, with a particular emphasis on transformation thermotics and its extended theories, thermal metamaterials and their engineering applications, diffusionics, diffusion metamaterials, and diffusion control.[3][4]

Thermal cloak, thermal metamaterials, and diffusion metamaterials

In 2008, Huang introduced the concept of a thermal cloak.[5] During that period, he formulated the steady-state transformation thermotics theory, drawing inspiration from the transformation optics theory.[6] He introduced the novel idea of a thermal cloak, drawing parallels with optical and electromagnetic cloaks.[6] The term "thermal cloak" refers to a protective shell enveloping an object, enabling the unobstructed passage of heat while preserving the temperature and heat flow patterns in the surrounding background.[5][7][8]

Subsequently, the concept of the thermal cloak underwent significant extensions. First, it evolved from the thermal cloak to thermal metamaterials.[9] Second, it further advanced from thermal metamaterials to diffusion metamaterials.[1][2][10] The description of diffusion metamaterials employs transformation theory and extended theories, a field referred to as diffusionics.[2] According to the categorization of governing equations, diffusion metamaterials constitute the third branch of metamaterials to emerge, setting themselves apart from the two previously established branches: electromagnetic/optical (transverse) wave metamaterials pioneered by Sir John Brian Pendry,[11][12] and other (longitudinal/transverse) wave metamaterials pioneered by Ping Sheng.[13] Currently, these three branches represent the comprehensive framework of the thriving field of metamaterials. For more in-depth information, please consult Section I.B of Ref.[2]

References

  1. 1.0 1.1 Z. R. Zhang, L. J. Xu, T. Qu, M. Lei, Z.-K. Lin, X. P. Ouyang, J.-H. Jiang, J. P. Huang (2023). "Diffusion metamaterials". Nat. Rev. Phys. 5 (4): 218. doi:10.1038/s42254-023-00565-4. Bibcode2023NatRP...5..218Z. 
  2. 2.0 2.1 2.2 2.3 F. B. Yang, Z. R. Zhang, L. J. Xu, Z. F. Liu, P. Jin, P. F. Zhuang, M. Lei, J. R. Liu, J.-H. Jiang, X. P. Ouyang, F. Marchesoni, J. P. Huang (2023). "Controlling mass and energy diffusion with metamaterials". Rev. Mod. Phys.: in press. 
  3. 3.0 3.1 3.2 "黄吉平". https://phys.fudan.edu.cn/f7/44/c7605a63300/page.htm. 
  4. 4.0 4.1 4.2 "个人介绍(Huang's CV)". https://thermotics.fudan.edu.cn/40906/list.htm. 
  5. 5.0 5.1 C. Z. Fan, Y. Gao, J. P. Huang (2008). "Shaped graded materials with an apparent negative thermal conductivity". Appl. Phys. Lett. 92 (25): 251907. doi:10.1063/1.2951600. Bibcode2008ApPhL..92y1907F. 
  6. 6.0 6.1 J. B. Pendry, D. Schurig, D. R. Smith (2006). "Controlling electromagnetic fields". Science 312 (5781): 1780–1782. doi:10.1126/science.1125907. PMID 16728597. Bibcode2006Sci...312.1780P. 
  7. T. Y. Chen, C.-N. Weng, J.-S. Chen (2008). "Cloak for curvilinearly anisotropic media in conduction". Appl. Phys. Lett. 93 (11): 114103. doi:10.1063/1.2988181. Bibcode2008ApPhL..93k4103C. 
  8. W. S. Yeung, R. J. Yang (2022). Introduction to Thermal Cloaking: Theory and Analysis in Conduction and Convection. Singapore: Springer. 
  9. M. Maldovan (2013). "Sound and heat revolutions in phononics". Nature 503 (7475): 209–217. doi:10.1038/nature12608. PMID 24226887. Bibcode2013Natur.503..209M. 
  10. F. B. Yang, J. P. Huang. Diffusionics: Diffusion Process Controlled by Diffusion Metamaterials (to be published in 2024). Singapore: Springer. https://www.amazon.ca/Diffusionics-Diffusion-Process-Controlled-Metamaterials/dp/9819704863. 
  11. J. B. Pendry, A. Holden, W. Stewart, I. Youngs (1996). "Extremely low frequency plasmons in metallic mesostructures". Phys. Rev. Lett. 76 (25): 4773–4776. doi:10.1103/PhysRevLett.76.4773. PMID 10061377. Bibcode1996PhRvL..76.4773P. 
  12. J. B. Pendry, A. Holden, D. Robbins, W. Stewart (1999). "Magnetism from conductors and enhanced nonlinear phenomena". IEEE Trans. Microw. Theory Tech. 47 (11): 2075–2084. doi:10.1109/22.798002. Bibcode1999ITMTT..47.2075P. 
  13. Z. Y. Liu, X. X. Zhang, Y. W. Mao, Y. Y. Zhu, Z. Y. Yang, C. T. Chan, P. Sheng (2000). "Locally resonant sonic materials". Science 289 (5485): 1734–1736. doi:10.1126/science.289.5485.1734. PMID 10976063. Bibcode2000Sci...289.1734L.