Zhu algebra

From HandWiki
Short description: Invariant of vertex algebra

In the theory of vertex algebras, the Zhu algebra and the closely related C2-algebra, introduced by Yongchang Zhu in his PhD thesis, are two associative algebras canonically constructed from a given vertex operator algebra.[1] Many important representation theoretic properties of the vertex algebra are logically related to properties of its Zhu algebra or C2-algebra.

Definitions

Let [math]\displaystyle{ V = \bigoplus_{n \ge 0} V_{(n)} }[/math] be a graded vertex operator algebra with [math]\displaystyle{ V_{(0)} = \mathbb{C}\mathbf{1} }[/math] and let [math]\displaystyle{ Y(a, z) = \sum_{n \in \Z} a_n z^{-n-1} }[/math] be the vertex operator associated to [math]\displaystyle{ a \in V. }[/math] Define [math]\displaystyle{ C_2(V)\subset V }[/math]to be the subspace spanned by elements of the form [math]\displaystyle{ a_{-2} b }[/math] for [math]\displaystyle{ a,b \in V. }[/math] An element [math]\displaystyle{ a \in V }[/math] is homogeneous with [math]\displaystyle{ \operatorname{wt} a = n }[/math] if [math]\displaystyle{ a \in V_{(n)}. }[/math] There are two binary operations on [math]\displaystyle{ V }[/math]defined by[math]\displaystyle{ a * b = \sum_{i \ge 0} \binom{\operatorname{wt} a}{i} a_{i-1}b, ~~~~~ a \circ b = \sum_{i \ge 0} \binom{\operatorname{wt}a}{i} a_{i-2} b }[/math]for homogeneous elements and extended linearly to all of [math]\displaystyle{ V }[/math]. Define [math]\displaystyle{ O(V)\subset V }[/math]to be the span of all elements [math]\displaystyle{ a\circ b }[/math].

The algebra [math]\displaystyle{ A(V) := V/O(V) }[/math] with the binary operation induced by [math]\displaystyle{ * }[/math] is an associative algebra called the Zhu algebra of [math]\displaystyle{ V }[/math].[1]

The algebra [math]\displaystyle{ R_V := V/C_2(V) }[/math] with multiplication [math]\displaystyle{ a\cdot b = a_{-1}b \mod C_2(V) }[/math] is called the C2-algebra of [math]\displaystyle{ V }[/math].

Main properties

  • The multiplication of the C2-algebra is commutative and the additional binary operation [math]\displaystyle{ \{a,b\} = a_{0}b\mod C_2(V) }[/math] is a Poisson bracket on [math]\displaystyle{ R_V }[/math]which gives the C2-algebra the structure of a Poisson algebra.[1]
  • (Zhu's C2-cofiniteness condition) If [math]\displaystyle{ R_V }[/math]is finite dimensional then [math]\displaystyle{ V }[/math] is said to be C2-cofinite. There are two main representation theoretic properties related to C2-cofiniteness. A vertex operator algebra [math]\displaystyle{ V }[/math] is rational if the category of admissible modules is semisimple and there are only finitely many irreducibles. It was conjectured that rationality is equivalent to C2-cofiniteness and a stronger condition regularity, however this was disproved in 2007 by Adamovic and Milas who showed that the triplet vertex operator algebra is C2-cofinite but not rational. [2][3][4] Various weaker versions of this conjecture are known, including that regularity implies C2-cofiniteness[2] and that for C2-cofinite [math]\displaystyle{ V }[/math] the conditions of rationality and regularity are equivalent.[5] This conjecture is a vertex algebras analogue of Cartan's criterion for semisimplicity in the theory of Lie algebras because it relates a structural property of the algebra to the semisimplicity of its representation category.
  • The grading on [math]\displaystyle{ V }[/math] induces a filtration [math]\displaystyle{ A(V) = \bigcup_{p \ge 0} A_p(V) }[/math] where [math]\displaystyle{ A_p(V) = \operatorname{im}(\oplus_{j = 0}^p V_p\to A(V)) }[/math]so that [math]\displaystyle{ A_p(V) \ast A_q(V) \subset A_{p+q}(V). }[/math] There is a surjective morphism of Poisson algebras [math]\displaystyle{ R_V \to \operatorname{gr}(A(V)) }[/math].[6]

Associated variety

Because the C2-algebra [math]\displaystyle{ R_V }[/math] is a commutative algebra it may be studied using the language of algebraic geometry. The associated scheme [math]\displaystyle{ \widetilde{X}_V }[/math] and associated variety [math]\displaystyle{ X_V }[/math] of [math]\displaystyle{ V }[/math] are defined to be [math]\displaystyle{ \widetilde{X}_V := \operatorname{Spec}(R_V), ~~~ X_V := (\widetilde{X}_V)_{\mathrm{red}} }[/math]which are an affine scheme an affine algebraic variety respectively. [7] Moreover, since [math]\displaystyle{ L(-1) }[/math] acts as a derivation on [math]\displaystyle{ R_V }[/math][1] there is an action of [math]\displaystyle{ \mathbb{C}^\ast }[/math] on the associated scheme making [math]\displaystyle{ \widetilde{X}_V }[/math] a conical Poisson scheme and [math]\displaystyle{ X_V }[/math] a conical Poisson variety. In this language, C2-cofiniteness is equivalent to the property that [math]\displaystyle{ X_V }[/math] is a point.

Example: If [math]\displaystyle{ W^k(\widehat{\mathfrak g}, f) }[/math] is the affine W-algebra associated to affine Lie algebra [math]\displaystyle{ \widehat{\mathfrak g} }[/math] at level [math]\displaystyle{ k }[/math] and nilpotent element [math]\displaystyle{ f }[/math] then [math]\displaystyle{ \widetilde{X}_{W^k(\widehat{\mathfrak g}, f)} = \mathcal{S}_f }[/math]is the Slodowy slice through [math]\displaystyle{ f }[/math].[8]

References

  1. 1.0 1.1 1.2 1.3 Zhu, Yongchang (1996). "Modular invariance of characters of vertex operator algebras". Journal of the American Mathematical Society 9 (1): 237–302. doi:10.1090/s0894-0347-96-00182-8. ISSN 0894-0347. 
  2. 2.0 2.1 Li, Haisheng (1999). "Some Finiteness Properties of Regular Vertex Operator Algebras". Journal of Algebra 212 (2): 495–514. doi:10.1006/jabr.1998.7654. ISSN 0021-8693. 
  3. Dong, Chongying; Li, Haisheng; Mason, Geoffrey (1997). "Regularity of Rational Vertex Operator Algebras". Advances in Mathematics 132 (1): 148–166. doi:10.1006/aima.1997.1681. ISSN 0001-8708. 
  4. Adamović, Dražen; Milas, Antun (2008-04-01). "On the triplet vertex algebra W(p)". Advances in Mathematics 217 (6): 2664–2699. doi:10.1016/j.aim.2007.11.012. ISSN 0001-8708. 
  5. Abe, Toshiyuki; Buhl, Geoffrey; Dong, Chongying (2003-12-15). "Rationality, regularity, and 𝐶₂-cofiniteness". Transactions of the American Mathematical Society 356 (8): 3391–3402. doi:10.1090/s0002-9947-03-03413-5. ISSN 0002-9947. 
  6. Arakawa, Tomoyuki; Lam, Ching Hung; Yamada, Hiromichi (2014). "Zhu's algebra, C2-algebra and C2-cofiniteness of parafermion vertex operator algebras". Advances in Mathematics 264: 261–295. doi:10.1016/j.aim.2014.07.021. ISSN 0001-8708. 
  7. Arakawa, Tomoyuki (2010-11-20). "A remark on the C 2-cofiniteness condition on vertex algebras". Mathematische Zeitschrift 270 (1–2): 559–575. doi:10.1007/s00209-010-0812-4. ISSN 0025-5874. http://dx.doi.org/10.1007/s00209-010-0812-4. 
  8. Arakawa, T. (2015-02-19). "Associated Varieties of Modules Over Kac-Moody Algebras and C2-Cofiniteness of W-Algebras". International Mathematics Research Notices. doi:10.1093/imrn/rnu277. ISSN 1073-7928. http://dx.doi.org/10.1093/imrn/rnu277.