Shelling (topology)

From HandWiki
Short description: Mathematical concept

In mathematics, a shelling of a simplicial complex is a way of gluing it together from its maximal simplices (simplices that are not a face of another simplex) in a well-behaved way. A complex admitting a shelling is called shellable.

Definition

A d-dimensional simplicial complex is called pure if its maximal simplices all have dimension d. Let [math]\displaystyle{ \Delta }[/math] be a finite or countably infinite simplicial complex. An ordering [math]\displaystyle{ C_1,C_2,\ldots }[/math] of the maximal simplices of [math]\displaystyle{ \Delta }[/math] is a shelling if the complex

[math]\displaystyle{ B_k:=\Big(\bigcup_{i=1}^{k-1}C_i\Big)\cap C_k }[/math]

is pure and of dimension [math]\displaystyle{ \dim C_k-1 }[/math] for all [math]\displaystyle{ k=2,3,\ldots }[/math]. That is, the "new" simplex [math]\displaystyle{ C_k }[/math] meets the previous simplices along some union [math]\displaystyle{ B_k }[/math] of top-dimensional simplices of the boundary of [math]\displaystyle{ C_k }[/math]. If [math]\displaystyle{ B_k }[/math] is the entire boundary of [math]\displaystyle{ C_k }[/math] then [math]\displaystyle{ C_k }[/math] is called spanning.

For [math]\displaystyle{ \Delta }[/math] not necessarily countable, one can define a shelling as a well-ordering of the maximal simplices of [math]\displaystyle{ \Delta }[/math] having analogous properties.

Properties

  • A shellable complex is homotopy equivalent to a wedge sum of spheres, one for each spanning simplex of corresponding dimension.
  • A shellable complex may admit many different shellings, but the number of spanning simplices and their dimensions do not depend on the choice of shelling. This follows from the previous property.

Examples

  • The boundary complex of a (convex) polytope is shellable.[2][3] Note that here, shellability is generalized to the case of polyhedral complexes (that are not necessarily simplicial).

Notes

  1. Björner, Anders (1984). "Some combinatorial and algebraic properties of Coxeter complexes and Tits buildings". Advances in Mathematics 52 (3): 173–212. doi:10.1016/0001-8708(84)90021-5. ISSN 0001-8708. 
  2. Bruggesser, H.; Mani, P.. "Shellable Decompositions of Cells and Spheres.". Mathematica Scandinavica 29: 197—205. doi:10.7146/math.scand.a-11045. 
  3. Lectures on polytopes. Springer. pp. 239—246. doi:10.1007/978-1-4613-8431-1_8. 
  4. Rudin, Mary Ellen (1958). "An unshellable triangulation of a tetrahedron". Bulletin of the American Mathematical Society 64 (3): 90–91. doi:10.1090/s0002-9904-1958-10168-8. ISSN 1088-9485. 

References