Physics:Bargmann's limit

From HandWiki

In quantum mechanics, Bargmann's limit, named for Valentine Bargmann, provides an upper bound on the number [math]\displaystyle{ N_\ell }[/math] of bound states with azimuthal quantum number [math]\displaystyle{ \ell }[/math] in a system with central potential [math]\displaystyle{ V }[/math]. It takes the form

[math]\displaystyle{ N_\ell \lt \frac{1}{2\ell+1} \frac{2m}{\hbar^2} \int_0^\infty r |V(r)|\, dr }[/math]

This limit is the best possible upper bound in such a way that for a given [math]\displaystyle{ \ell }[/math], one can always construct a potential [math]\displaystyle{ V_\ell }[/math] for which [math]\displaystyle{ N_\ell }[/math] is arbitrarily close to this upper bound. Note that the Dirac delta function potential attains this limit. After the first proof of this inequality by Valentine Bargmann in 1953,[1] Julian Schwinger presented an alternative way of deriving it in 1961.[2]

Rigorous formulation and proof

Stated in a formal mathematical way, Bargmann's limit goes as follows. Let [math]\displaystyle{ V:\mathbb{R}^3\to\mathbb{R}:\mathbf{r}\mapsto V(r) }[/math] be a spherically symmetric potential, such that it is piecewise continuous in [math]\displaystyle{ r }[/math], [math]\displaystyle{ V(r)=O(1/r^a) }[/math] for [math]\displaystyle{ r\to0 }[/math] and [math]\displaystyle{ V(r)=O(1/r^b) }[/math] for [math]\displaystyle{ r\to+\infty }[/math], where [math]\displaystyle{ a\in(2,+\infty) }[/math] and [math]\displaystyle{ b\in(-\infty,2) }[/math]. If

[math]\displaystyle{ \int_0^{+\infty}r|V(r)|dr\lt +\infty, }[/math]

then the number of bound states [math]\displaystyle{ N_\ell }[/math] with azimuthal quantum number [math]\displaystyle{ \ell }[/math] for a particle of mass [math]\displaystyle{ m }[/math] obeying the corresponding Schrödinger equation, is bounded from above by

[math]\displaystyle{ N_\ell\lt \frac{1}{2\ell+1}\frac{2m}{\hbar^2}\int_0^{+\infty}r|V(r)|dr. }[/math]

Although the original proof by Valentine Bargmann is quite technical, the main idea follows from two general theorems on ordinary differential equations, the Sturm Oscillation Theorem and the Sturm-Picone Comparison Theorem. If we denote by [math]\displaystyle{ u_{0\ell} }[/math] the wave function subject to the given potential with total energy [math]\displaystyle{ E=0 }[/math] and azimuthal quantum number [math]\displaystyle{ \ell }[/math], the Sturm Oscillation Theorem implies that [math]\displaystyle{ N_\ell }[/math] equals the number of nodes of [math]\displaystyle{ u_{0\ell} }[/math]. From the Sturm-Picone Comparison Theorem, it follows that when subject to a stronger potential [math]\displaystyle{ W }[/math] (i.e. [math]\displaystyle{ W(r)\leq V(r) }[/math] for all [math]\displaystyle{ r\in\mathbb{R}_0^+ }[/math]), the number of nodes either grows or remains the same. Thus, more specifically, we can replace the potential [math]\displaystyle{ V }[/math] by [math]\displaystyle{ -|V| }[/math]. For the corresponding wave function with total energy [math]\displaystyle{ E=0 }[/math] and azimuthal quantum number [math]\displaystyle{ \ell }[/math], denoted by [math]\displaystyle{ \phi_{0\ell} }[/math], the radial Schrödinger equation becomes

[math]\displaystyle{ \frac{d^{2}}{d r^{2}} \phi_{0\ell}(r)-\frac{\ell(\ell+1)}{r^{2}} \phi_{0\ell}(r)=-W(r) \phi_{0\ell}(r), }[/math]

with [math]\displaystyle{ W=2m|V|/\hbar^2 }[/math]. By applying variation of parameters, one can obtain the following implicit solution

[math]\displaystyle{ \phi_{0\ell}(r)=r^{\ell+1}-\int_{0}^{p} G(r, \rho) \phi_{0\ell}(\rho) W(\rho) d \rho, }[/math]

where [math]\displaystyle{ G(r,\rho) }[/math] is given by

[math]\displaystyle{ G(r, \rho)=\frac{1}{2 \ell+1}\left[r\bigg(\frac{r}{\rho}\bigg)^{\ell}-\rho\bigg(\frac{\rho}{r}\bigg)^{\ell}\right]. }[/math]

If we now denote all successive nodes of [math]\displaystyle{ \phi_{0\ell} }[/math] by [math]\displaystyle{ 0=\nu_1\lt \nu_2\lt \dots\lt \nu_{N} }[/math], one can show from the implicit solution above that for consecutive nodes [math]\displaystyle{ \nu_{i} }[/math] and [math]\displaystyle{ \nu_{i+1} }[/math]

[math]\displaystyle{ \frac{2m}{\hbar^2}\int_{\nu_{i}}^{\nu_{i+1}} r|V(r)|dr\gt 2\ell+1. }[/math]

From this, we can conclude that

[math]\displaystyle{ \frac{2m}{\hbar^2}\int_{0}^{+\infty}r|V(r)|dr\geq\frac{2m}{\hbar^2}\int_{0}^{\nu_N}r|V(r)|dr\gt N(2\ell+1)\geq N_\ell(2\ell+1), }[/math]

proving Bargmann's limit. Note that as the integral on the right is assumed to be finite, so must be [math]\displaystyle{ N }[/math] and [math]\displaystyle{ N_\ell }[/math]. Furthermore, for a given value of [math]\displaystyle{ \ell }[/math], one can always construct a potential [math]\displaystyle{ V_\ell }[/math] for which [math]\displaystyle{ N_\ell }[/math] is arbitrarily close to Bargmann's limit. The idea to obtain such a potential, is to approximate Dirac delta function potentials, as these attain the limit exactly. An example of such a construction can be found in Bargmann's original paper.[1]

References

  1. 1.0 1.1 Bargmann, V. (1952). "On the Number of Bound States in a Central Field of Force". Proceedings of the National Academy of Sciences 38 (11): 961–966. doi:10.1073/pnas.38.11.961. ISSN 0027-8424. PMID 16589209. Bibcode1952PNAS...38..961B. 
  2. Schwinger, J. (1961). "On the Bound States of a Given Potential". Proceedings of the National Academy of Sciences 47 (1): 122–129. doi:10.1073/pnas.47.1.122. ISSN 0027-8424. PMID 16590804. Bibcode1961PNAS...47..122S.