Neumann polynomial

From HandWiki

In mathematics, the Neumann polynomials, introduced by Carl Neumann for the special case [math]\displaystyle{ \alpha=0 }[/math], are a sequence of polynomials in [math]\displaystyle{ 1/t }[/math] used to expand functions in term of Bessel functions.[1] The first few polynomials are

[math]\displaystyle{ O_0^{(\alpha)}(t)=\frac 1 t, }[/math]
[math]\displaystyle{ O_1^{(\alpha)}(t)=2\frac {\alpha+1}{t^2}, }[/math]
[math]\displaystyle{ O_2^{(\alpha)}(t)=\frac {2+\alpha}{t}+ 4\frac {(2+\alpha)(1+\alpha)}{t^3}, }[/math]
[math]\displaystyle{ O_3^{(\alpha)}(t)=2\frac {(1+\alpha)(3+\alpha)}{t^2}+ 8\frac {(1+\alpha)(2+\alpha)(3+\alpha)}{t^4}, }[/math]
[math]\displaystyle{ O_4^{(\alpha)}(t)=\frac {(1+\alpha)(4+\alpha)}{2t}+ 4\frac {(1+\alpha)(2+\alpha)(4+\alpha)}{t^3}+ 16\frac {(1+\alpha)(2+\alpha)(3+\alpha)(4+\alpha)}{t^5}. }[/math]

A general form for the polynomial is

[math]\displaystyle{ O_n^{(\alpha)}(t)= \frac{\alpha+n}{2\alpha} \sum_{k=0}^{\lfloor n/2\rfloor} (-1)^{n-k}\frac {(n-k)!} {k!} {-\alpha \choose n-k}\left(\frac 2 t \right)^{n+1-2k}, }[/math]

and they have the "generating function"

[math]\displaystyle{ \frac{\left(\frac z 2 \right)^\alpha} {\Gamma(\alpha+1)} \frac 1 {t-z}= \sum_{n=0}O_n^{(\alpha)}(t) J_{\alpha+n}(z), }[/math]

where J are Bessel functions.

To expand a function f in the form

[math]\displaystyle{ f(z)=\sum_{n=0} a_n J_{\alpha+n}(z)\, }[/math]

for [math]\displaystyle{ |z|\lt c }[/math], compute

[math]\displaystyle{ a_n=\frac 1 {2 \pi i} \oint_{|z|=c'} \frac{\Gamma(\alpha+1)}{\left(\frac z 2\right)^\alpha}f(z) O_n^{(\alpha)}(z)\,dz, }[/math]

where [math]\displaystyle{ c'\lt c }[/math] and c is the distance of the nearest singularity of [math]\displaystyle{ z^{-\alpha} f(z) }[/math] from [math]\displaystyle{ z=0 }[/math].

Examples

An example is the extension

[math]\displaystyle{ \left(\tfrac{1}{2}z\right)^s= \Gamma(s)\cdot\sum_{k=0}(-1)^k J_{s+2k}(z)(s+2k){-s \choose k}, }[/math]

or the more general Sonine formula[2]

[math]\displaystyle{ e^{i \gamma z}= \Gamma(s)\cdot\sum_{k=0}i^k C_k^{(s)}(\gamma)(s+k)\frac{J_{s+k}(z)}{\left(\frac z 2\right)^s}. }[/math]

where [math]\displaystyle{ C_k^{(s)} }[/math] is Gegenbauer's polynomial. Then,[citation needed][original research?]

[math]\displaystyle{ \frac{\left(\frac z 2\right)^{2k}}{(2k-1)!}J_s(z)= \sum_{i=k}(-1)^{i-k}{i+k-1\choose 2k-1}{i+k+s-1\choose 2k-1}(s+2i)J_{s+2i}(z), }[/math]
[math]\displaystyle{ \sum_{n=0} t^n J_{s+n}(z)= \frac{e^{\frac{t z}2}}{t^s} \sum_{j=0}\frac{\left(-\frac{z}{2t}\right)^j}{j!}\frac{\gamma \left(j+s,\frac{t z}{2}\right)}{\,\Gamma (j+s)}= \int_0^\infty e^{-\frac{z x^2}{2 t}}\frac {z x}{t} \frac{J_s(z\sqrt{1-x^2})}{\sqrt{1-x^2}^s}\,dx, }[/math]

the confluent hypergeometric function

[math]\displaystyle{ M(a,s,z)= \Gamma (s) \sum_{k=0}^\infty \left(-\frac{1}{t}\right)^k L_k^{(-a-k)}(t) \frac{J_{s+k-1}\left(2 \sqrt{t z}\right)}{(\sqrt{t z})^{s-k-1}}, }[/math]

and in particular

[math]\displaystyle{ \frac{J_s(2 z)}{z^s}= \frac{4^s \Gamma\left(s+\frac12\right)}{\sqrt\pi}e^{2 i z}\sum_{k=0}L_k^{(-s-1/2-k)}\left(\frac{it}4\right)(4 i z)^k \frac{J_{2s+k}\left(2\sqrt{t z}\right)}{\sqrt{t z}^{2s+k}}, }[/math]

the index shift formula

[math]\displaystyle{ \Gamma(\nu-\mu) J_\nu(z)= \Gamma(\mu+1) \sum_{n=0}\frac{\Gamma(\nu-\mu+n)}{n!\Gamma(\nu+n+1)} \left(\frac z 2\right)^{\nu-\mu+n}J_{\mu+n}(z), }[/math]

the Taylor expansion (addition formula)

[math]\displaystyle{ \frac{J_s\left(\sqrt{z^2-2uz}\right)}{\left(\sqrt{z^2-2uz}\right)^{\pm s}}= \sum_{k=0}\frac{(\pm u)^k}{k!}\frac{J_{s\pm k}(z)}{z^{\pm s}}, }[/math]

(cf.[3][failed verification]) and the expansion of the integral of the Bessel function,

[math]\displaystyle{ \int J_s(z)dz= 2 \sum_{k=0} J_{s+2k+1}(z), }[/math]

are of the same type.

See also

Notes

  1. Abramowitz and Stegun, p. 363, 9.1.82 ff.
  2. Erdélyi et al. 1955 II.7.10.1, p.64
  3. "8.515.1." (in English). Table of Integrals, Series, and Products (8 ed.). Academic Press, Inc.. 2015. p. 944. ISBN 0-12-384933-0.