Kravchuk polynomials

From HandWiki

Kravchuk polynomials or Krawtchouk polynomials (also written using several other transliterations of the Ukrainian surname Кравчу́к) are discrete orthogonal polynomials associated with the binomial distribution, introduced by Mykhailo Kravchuk (1929). The first few polynomials are (for q = 2):

[math]\displaystyle{ \mathcal{K}_0(x; n) = 1, }[/math]
[math]\displaystyle{ \mathcal{K}_1(x; n) = -2x + n, }[/math]
[math]\displaystyle{ \mathcal{K}_2(x; n) = 2x^2 - 2nx + \binom{n}{2}, }[/math]
[math]\displaystyle{ \mathcal{K}_3(x; n) = -\frac{4}{3}x^3 + 2nx^2 - (n^2 - n + \frac{2}{3})x + \binom{n}{3}. }[/math]

The Kravchuk polynomials are a special case of the Meixner polynomials of the first kind.

Definition

For any prime power q and positive integer n, define the Kravchuk polynomial

[math]\displaystyle{ \mathcal{K}_k(x; n,q) = \mathcal{K}_k(x) = \sum_{j=0}^{k}(-1)^j (q-1)^{k-j} \binom {x}{j} \binom{n-x}{k-j}, \quad k=0,1, \ldots, n. }[/math]

Properties

The Kravchuk polynomial has the following alternative expressions:

[math]\displaystyle{ \mathcal{K}_k(x; n,q) = \sum_{j=0}^{k}(-q)^j (q-1)^{k-j} \binom {n-j}{k-j} \binom{x}{j}. }[/math]
[math]\displaystyle{ \mathcal{K}_k(x; n,q) = \sum_{j=0}^{k}(-1)^j q^{k-j} \binom {n-k+j}{j} \binom{n-x}{k-j}. }[/math]

Symmetry relations

For integers [math]\displaystyle{ i,k \ge 0 }[/math], we have that

[math]\displaystyle{ \begin{align} (q-1)^{i} {n \choose i} \mathcal{K}_k(i;n,q) = (q-1)^{k}{n \choose k} \mathcal{K}_i(k;n,q). \end{align} }[/math]

Orthogonality relations

For non-negative integers r, s,

[math]\displaystyle{ \sum_{i=0}^n\binom{n}{i}(q-1)^i\mathcal{K}_r(i; n,q)\mathcal{K}_s(i; n,q) = q^n(q-1)^r\binom{n}{r}\delta_{r,s}. }[/math]

Generating function

The generating series of Kravchuk polynomials is given as below. Here [math]\displaystyle{ z }[/math] is a formal variable.

[math]\displaystyle{ \begin{align} (1+(q-1)z)^{n-x}(1-z)^x &= \sum_{k=0}^\infty \mathcal{K}_k(x;n,q) {z^k}. \end{align} }[/math]

Three term recurrence

The Kravchuk polynomials satisfy the three-term recurrence relation

[math]\displaystyle{ \begin{align} x \mathcal{K}_k(x;n,q) = - q(n-k) \mathcal{K}_{k+1}(x;n,q) + (q(n-k) + k(1-q)) \mathcal{K}_{k}(x;n,q) - k(1-q)\mathcal{K}_{k-1}(x;n,q). \end{align} }[/math]


See also

References

External links