Interleaving distance

From HandWiki
Short description: Measure of distance between persistence modules
A 1-interleaving between two [math]\displaystyle{ \mathbb Z }[/math]-indexed persistence modules M and N, represented as a diagram of vector spaces and linear maps between them.

In topological data analysis, the interleaving distance is a measure of similarity between persistence modules, a common object of study in topological data analysis and persistent homology. The interleaving distance was first introduced by Frédéric Chazal et al. in 2009.[1] since then, it and its generalizations have been a central consideration in the study of applied algebraic topology and topological data analysis.[2][3][4][5][6]

Definition

A persistence module [math]\displaystyle{ \mathbb V }[/math] is a collection [math]\displaystyle{ (V_t \mid t \in \mathbb R) }[/math] of vector spaces indexed over the real line, along with a collection [math]\displaystyle{ (v^s_t : V_s \to V_t \mid s\leq t) }[/math] of linear maps such that [math]\displaystyle{ v^t_t }[/math] is always an isomorphism, and the relation [math]\displaystyle{ v^s_t \circ v^r_s = v^r_t }[/math] is satisfied for every [math]\displaystyle{ r\leq s \leq t }[/math]. The case of [math]\displaystyle{ \mathbb R }[/math] indexing is presented here for simplicity, though the interleaving distance can be readily adapted to more general settings, including multi-dimensional persistence modules.[7]

Let [math]\displaystyle{ \mathbb U }[/math] and [math]\displaystyle{ \mathbb V }[/math] be persistence modules. Then for any [math]\displaystyle{ \delta \in \mathbb R }[/math], a [math]\displaystyle{ \delta }[/math]-shift is a collection [math]\displaystyle{ (\phi_t : U_t \to V_{t+\delta} \mid t \in \mathbb R) }[/math] of linear maps between the persistence modules that commute with the internal maps of [math]\displaystyle{ \mathbb U }[/math] and [math]\displaystyle{ \mathbb V }[/math].

The persistence modules [math]\displaystyle{ \mathbb U }[/math] and [math]\displaystyle{ \mathbb V }[/math] are said to be [math]\displaystyle{ \delta }[/math]-interleaved if there are [math]\displaystyle{ \delta }[/math]-shifts [math]\displaystyle{ \phi_t: U_t \to V_{t+ \delta} }[/math] and [math]\displaystyle{ \psi_t: V_t \to U_{t+ \delta} }[/math] such that the following diagrams commute for all [math]\displaystyle{ s \leq t }[/math].

Interleaving commutative diagram.png

It follows from the definition that if [math]\displaystyle{ \mathbb U }[/math] and [math]\displaystyle{ \mathbb V }[/math] are [math]\displaystyle{ \delta }[/math]-interleaved for some [math]\displaystyle{ \delta }[/math], then they are also [math]\displaystyle{ (\delta + \varepsilon) }[/math]-interleaved for any positive [math]\displaystyle{ \varepsilon }[/math]. Therefore, in order to find the closest interleaving between the two modules, we must take the infimum across all possible interleavings.

The interleaving distance between two persistence modules [math]\displaystyle{ \mathbb U }[/math] and [math]\displaystyle{ \mathbb V }[/math] is defined as [math]\displaystyle{ d_I (\mathbb U, \mathbb V) = \inf \{\delta \mid \mathbb U \text{ and } \mathbb V \text{ are } \delta\text{-interleaved}\} }[/math].[8]

Properties

Metric properties

It can be shown that the interleaving distance satisfies the triangle inequality. Namely, given three persistence modules [math]\displaystyle{ \mathbb U }[/math], [math]\displaystyle{ \mathbb V }[/math], and [math]\displaystyle{ \mathbb W }[/math], the inequality [math]\displaystyle{ d_I (\mathbb U, \mathbb W) \leq d_I (\mathbb U, \mathbb V) + d_I (\mathbb V, \mathbb W) }[/math] is satisfied.[8]

On the other hand, there are examples of persistence modules that are not isomorphic but that have interleaving distance zero. Furthermore, if no suitable [math]\displaystyle{ \delta }[/math] exists then two persistence modules are said to have infinite interleaving distance. These two properties make the interleaving distance an extended pseudometric, which means non-identical objects are allowed to have distance zero, and objects are allowed to have infinite distance, but the other properties of a proper metric are satisfied.

Further metric properties of the interleaving distance and its variants were investigated by Luis Scoccola in 2020.[9]

Computational complexity

Computing the interleaving distance between two single-parameter persistence modules can be accomplished in polynomial time. On the other hand, it was shown in 2018 that computing the interleaving distance between two multi-dimensional persistence modules is NP-hard.[10][11]

References

  1. Chazal, Frédéric; Cohen-Steiner, David; Glisse, Marc; Guibas, Leonidas J.; Oudot, Steve Y. (2009-06-08). "Proximity of persistence modules and their diagrams". Proceedings of the twenty-fifth annual symposium on Computational geometry. SCG '09. New York, NY, USA: Association for Computing Machinery. pp. 237–246. doi:10.1145/1542362.1542407. ISBN 978-1-60558-501-7. https://doi.org/10.1145/1542362.1542407. 
  2. Nelson, Bradley J.; Luo, Yuan (2022-01-31). "Topology-Preserving Dimensionality Reduction via Interleaving Optimization". arXiv:2201.13012 [cs.LG].
  3. "Interleaving Distance between Merge Trees « Publications « Dmitriy Morozov". https://mrzv.org/publications/interleaving-distance-merge-trees/. 
  4. Meehan, Killian; Meyer, David (2017-10-29). "Interleaving Distance as a Limit". arXiv:1710.11489 [math.AT].
  5. Munch, Elizabeth; Stefanou, Anastasios (2019), Gasparovic, Ellen; Domeniconi, Carlotta, eds., "The ℓ ∞-Cophenetic Metric for Phylogenetic Trees As an Interleaving Distance" (in en), Research in Data Science (Cham: Springer International Publishing) 17: pp. 109–127, doi:10.1007/978-3-030-11566-1_5, ISBN 978-3-030-11565-4, http://link.springer.com/10.1007/978-3-030-11566-1_5, retrieved 2023-04-07 
  6. de Silva, Vin; Munch, Elizabeth; Stefanou, Anastasios (2018-05-30). "Theory of interleavings on categories with a flow". arXiv:1706.04095 [math.CT].
  7. Lesnick, Michael (2015-06-01). "The Theory of the Interleaving Distance on Multidimensional Persistence Modules" (in en). Foundations of Computational Mathematics 15 (3): 613–650. doi:10.1007/s10208-015-9255-y. ISSN 1615-3383. https://doi.org/10.1007/s10208-015-9255-y. 
  8. 8.0 8.1 Chazal, Frédéric; de Silva, Vin; Glisse, Marc; Oudot, Steve (2016). The Structure and Stability of Persistence Modules. SpringerBriefs in Mathematics. Cham: Springer International Publishing. pp. 67–83. doi:10.1007/978-3-319-42545-0. ISBN 978-3-319-42543-6. http://link.springer.com/10.1007/978-3-319-42545-0. 
  9. Scoccola, Luis (2020-07-15). "Locally Persistent Categories And Metric Properties Of Interleaving Distances". Electronic Thesis and Dissertation Repository. https://ir.lib.uwo.ca/etd/7119. 
  10. Bjerkevik, Håvard Bakke; Botnan, Magnus Bakke; Kerber, Michael (2019-10-09). "Computing the interleaving distance is NP-hard". arXiv:1811.09165 [cs.CG].
  11. Bjerkevik, Håvard Bakke; Botnan, Magnus Bakke (2018-04-30). "Computational Complexity of the Interleaving Distance". arXiv:1712.04281 [cs.CG].