Grothendieck trace theorem

From HandWiki
Short description: Extension of Lidskii's theorem

In functional analysis, the Grothendieck trace theorem is an extension of Lidskii's theorem about the trace and the determinant of a certain class of nuclear operators on Banach spaces, the so-called [math]\displaystyle{ \tfrac{2}{3} }[/math]-nuclear operators.[1] The theorem was proven in 1955 by Alexander Grothendieck.[2] Lidskii's theorem does not hold in general for Banach spaces.

The theorem should not be confused with the Grothendieck trace formula from algebraic geometry.

Grothendieck trace theorem

Given a Banach space [math]\displaystyle{ (B,\|\cdot\|) }[/math] with the approximation property and denote its dual as [math]\displaystyle{ B' }[/math].

⅔-nuclear operators

Let [math]\displaystyle{ A }[/math] be a nuclear operator on [math]\displaystyle{ B }[/math], then [math]\displaystyle{ A }[/math] is a [math]\displaystyle{ \tfrac{2}{3} }[/math]-nuclear operator if it has a decomposition of the form [math]\displaystyle{ A = \sum\limits_{k=1}^{\infty}\varphi_k \otimes f_k }[/math] where [math]\displaystyle{ \varphi_k \in B }[/math] and [math]\displaystyle{ f_k \in B' }[/math] and [math]\displaystyle{ \sum\limits_{k=1}^{\infty}\|\varphi_k\|^{2/3} \|f_k\|^{2/3} \lt \infty. }[/math]

Grothendieck's trace theorem

Let [math]\displaystyle{ \lambda_j(A) }[/math] denote the eigenvalues of a [math]\displaystyle{ \tfrac{2}{3} }[/math]-nuclear operator [math]\displaystyle{ A }[/math] counted with their algebraic multiplicities. If [math]\displaystyle{ \sum\limits_j |\lambda_j(A)| \lt \infty }[/math] then the following equalities hold: [math]\displaystyle{ \operatorname{tr}A = \sum\limits_j |\lambda_j(A)| }[/math] and for the Fredholm determinant [math]\displaystyle{ \operatorname{det}(I+A) = \prod\limits_j (1+\lambda_j(A)). }[/math]

See also

Literature

  • Gohberg, Israel; Goldberg, Seymour; Krupnik, Nahum (1991). Traces and Determinants of Linear Operators. Operator Theory Advances and Applications. Basel: Birkhäuser. p. 102. ISBN 978-3-7643 -6177-8. 

References

  1. Gohberg, Israel; Goldberg, Seymour; Krupnik, Nahum (1991). Traces and Determinants of Linear Operators. Operator Theory Advances and Applications. Basel: Birkhäuser. p. 102. ISBN 978-3-7643 -6177-8. 
  2. * Grothendieck, Alexander (1955) (in fr). Produits tensoriels topologiques et espaces nucléaires. Providence: American Mathematical Society. p. 19. ISBN 0-8218-1216-5. OCLC 1315788.