Fundamental pair of periods

From HandWiki
Short description: Way of defining a lattice in the complex plane

In mathematics, a fundamental pair of periods is an ordered pair of complex numbers that defines a lattice in the complex plane. This type of lattice is the underlying object with which elliptic functions and modular forms are defined.

Fundamental parallelogram defined by a pair of vectors in the complex plane.

Definition

A fundamental pair of periods is a pair of complex numbers [math]\displaystyle{ \omega_1,\omega_2 \in \Complex }[/math] such that their ratio [math]\displaystyle{ \omega_2 / \omega_1 }[/math] is not real. If considered as vectors in [math]\displaystyle{ \R^2 }[/math], the two are not collinear. The lattice generated by [math]\displaystyle{ \omega_1 }[/math] and [math]\displaystyle{ \omega_2 }[/math] is

[math]\displaystyle{ \Lambda = \left\{ m\omega_1 + n\omega_2 \mid m,n\in\Z \right\}. }[/math]

This lattice is also sometimes denoted as [math]\displaystyle{ \Lambda(\omega_1, \omega_2) }[/math] to make clear that it depends on [math]\displaystyle{ \omega_1 }[/math] and [math]\displaystyle{ \omega_2. }[/math] It is also sometimes denoted by [math]\displaystyle{ \Omega\vphantom{(} }[/math] or [math]\displaystyle{ \Omega(\omega_1, \omega_2), }[/math] or simply by [math]\displaystyle{ (\omega_1, \omega_2). }[/math] The two generators [math]\displaystyle{ \omega_1 }[/math] and [math]\displaystyle{ \omega_2 }[/math] are called the lattice basis. The parallelogram with vertices [math]\displaystyle{ (0, \omega_1, \omega_1+\omega_2, \omega_2) }[/math] is called the fundamental parallelogram.

While a fundamental pair generates a lattice, a lattice does not have any unique fundamental pair; in fact, an infinite number of fundamental pairs correspond to the same lattice.

Algebraic properties

A number of properties, listed below, can be seen.

Equivalence

A lattice spanned by periods ω1 and ω2, showing an equivalent pair of periods α1 and α2.

Two pairs of complex numbers [math]\displaystyle{ (\omega_1, \omega_2) }[/math] and [math]\displaystyle{ (\alpha_1, \alpha_2) }[/math] are called equivalent if they generate the same lattice: that is, if [math]\displaystyle{ \Lambda(\omega_1, \omega_2) = \Lambda(\alpha_1, \alpha_2). }[/math]

No interior points

The fundamental parallelogram contains no further lattice points in its interior or boundary. Conversely, any pair of lattice points with this property constitute a fundamental pair, and furthermore, they generate the same lattice.

Modular symmetry

Two pairs [math]\displaystyle{ (\omega_1,\omega_2) }[/math] and [math]\displaystyle{ (\alpha_1,\alpha_2) }[/math] are equivalent if and only if there exists a 2 × 2 matrix [math]\displaystyle{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} }[/math] with integer entries [math]\displaystyle{ a, }[/math] [math]\displaystyle{ b, }[/math] [math]\displaystyle{ c, }[/math] and [math]\displaystyle{ d }[/math] and determinant [math]\displaystyle{ ad - bc = \pm 1 }[/math] such that

[math]\displaystyle{ \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \omega_1 \\ \omega_2 \end{pmatrix}, }[/math]

that is, so that

[math]\displaystyle{ \begin{align} \alpha_1 = a\omega_1+b\omega_2, \\[5mu] \alpha_2 = c\omega_1+d\omega_2. \end{align} }[/math]

This matrix belongs to the modular group [math]\displaystyle{ \mathrm{SL}(2,\Z). }[/math] This equivalence of lattices can be thought of as underlying many of the properties of elliptic functions (especially the Weierstrass elliptic function) and modular forms.

Topological properties

The abelian group [math]\displaystyle{ \Z^2 }[/math] maps the complex plane into the fundamental parallelogram. That is, every point [math]\displaystyle{ z \in \Complex }[/math] can be written as [math]\displaystyle{ z = p+m\omega_1+n\omega_2 }[/math] for integers [math]\displaystyle{ m,n }[/math] with a point [math]\displaystyle{ p }[/math] in the fundamental parallelogram.

Since this mapping identifies opposite sides of the parallelogram as being the same, the fundamental parallelogram has the topology of a torus. Equivalently, one says that the quotient manifold [math]\displaystyle{ \C/\Lambda }[/math] is a torus.

Fundamental region

The grey depicts the canonical fundamental domain.

Define [math]\displaystyle{ \tau = \omega_2/\omega_1 }[/math] to be the half-period ratio. Then the lattice basis can always be chosen so that [math]\displaystyle{ \tau }[/math] lies in a special region, called the fundamental domain. Alternately, there always exists an element of the projective special linear group [math]\displaystyle{ \operatorname{PSL}(2,\Z) }[/math] that maps a lattice basis to another basis so that [math]\displaystyle{ \tau }[/math] lies in the fundamental domain.

The fundamental domain is given by the set [math]\displaystyle{ D, }[/math] which is composed of a set [math]\displaystyle{ U }[/math] plus a part of the boundary of [math]\displaystyle{ U }[/math]:

[math]\displaystyle{ U = \left\{ z \in H: \left| z \right| \gt 1, \, \left| \operatorname{Re}(z) \right| \lt \tfrac{1}{2} \right\}. }[/math]

where [math]\displaystyle{ H }[/math] is the upper half-plane.

The fundamental domain [math]\displaystyle{ D }[/math] is then built by adding the boundary on the left plus half the arc on the bottom:

[math]\displaystyle{ D = U \cup \left\{ z \in H: \left| z \right| \geq 1,\, \operatorname{Re}(z) = -\tfrac{1}{2} \right\} \cup \left\{ z \in H: \left| z \right| = 1,\, \operatorname{Re}(z) \le 0 \right\}. }[/math]

Three cases pertain:

  • If [math]\displaystyle{ \tau \ne i }[/math] and [math]\displaystyle{ \tau \ne e^{i\pi/3} }[/math], then there are exactly two lattice bases with the same [math]\displaystyle{ \tau }[/math] in the fundamental region: [math]\displaystyle{ (\omega_1,\omega_2) }[/math] and [math]\displaystyle{ (-\omega_1,-\omega_2). }[/math]
  • If [math]\displaystyle{ \tau=i }[/math], then four lattice bases have the same [math]\displaystyle{ \tau }[/math]: the above two [math]\displaystyle{ (\omega_1,\omega_2) }[/math], [math]\displaystyle{ (-\omega_1,-\omega_2) }[/math] and [math]\displaystyle{ (i\omega_1,i\omega_2) }[/math], [math]\displaystyle{ (-i\omega_1,-i\omega_2). }[/math]
  • If [math]\displaystyle{ \tau=e^{i\pi/3} }[/math], then there are six lattice bases with the same [math]\displaystyle{ \tau }[/math]: [math]\displaystyle{ (\omega_1,\omega_2) }[/math], [math]\displaystyle{ (\tau \omega_1, \tau \omega_2) }[/math], [math]\displaystyle{ (\tau^2 \omega_1, \tau^2 \omega_2) }[/math] and their negatives.

In the closure of the fundamental domain: [math]\displaystyle{ \tau=i }[/math] and [math]\displaystyle{ \tau=e^{i\pi/3}. }[/math]

See also

References

  • Tom M. Apostol, Modular functions and Dirichlet Series in Number Theory (1990), Springer-Verlag, New York. ISBN:0-387-97127-0 (See chapters 1 and 2.)
  • Jurgen Jost, Compact Riemann Surfaces (2002), Springer-Verlag, New York. ISBN:3-540-43299-X (See chapter 2.)