Biography:Sasikanth Manipatruni

From HandWiki
Short description: American electrical engineer (born 1984)
Sasikanth Manipatruni
Born1984
NationalityAmerican
Alma materCornell University
ETH Zurich
IIT Delhi
Indian Institute of Science
Jawahar Navodaya Vidyalaya
Known forBeyond CMOS
Magneto-Electric Spin-Orbit
Silicon photonics
Spintronics
In-memory processing
Quantum materials
Artificial intelligence
AwardsIEEE/ACM Young Innovator Award,[1] National Academy of Engineering Frontiers award,[2] SRC Mahboob Khan Award [3]
Scientific career
InstitutionsIntel
General Electric Research Laboratory
Cornell University
ETH Zurich
Indian Institute of Science
Inter-University Centre for Astronomy and Astrophysics
ThesisScaling silicon nanophotonic interconnects : silicon electrooptic modulators, slowlight & optomechanical devices (2010)
Doctoral advisorMichal Lipson
Alexander Gaeta
Other academic advisorsAjoy Ghatak
Manfred Morari
Christopher J. Hardy
Keren Bergman

Sasikanth Manipatruni is an American engineer and inventor in the fields of Computer engineering, Integrated circuit technology, Materials Engineering and semiconductor device fabrication.[5] Manipatruni contributed to developments in silicon photonics, spintronics and quantum materials.[6][7][8]

Manipatruni is a co-author of 50 research papers and ~400 patents[9] (cited about 7500 times [5]) in the areas of electro-optic modulators,[10][11] Cavity optomechanics,[12][13] nanophotonics & optical interconnects,[14][15] spintronics,[16][17] and new logic devices for extension of Moore's law.[18][19] His work has appeared in Nature, Nature Physics, Nature communications, Science advances and Physical Review Letters.

Early life and education

Manipatruni received a bachelor's degree in Electrical Engineering and Physics from IIT Delhi in 2005 where he graduated with the institute silver medal.[20] He also completed research under the Kishore Vaigyanik Protsahan Yojana[21] at Indian Institute of Science working at Inter-University Centre for Astronomy and Astrophysics and in optimal control[22] at Swiss Federal Institute of Technology at Zurich.

Research career

Manipatruni received his Ph.D. in Electrical Engineering with minor in applied engineering physics from Cornell University.[23] The title of his thesis was "Scaling silicon nanophotonic interconnects : silicon electrooptic modulators, slowlight & optomechanical devices".[23] His thesis advisors were Michal Lipson and Alexander Gaeta at Cornell University. He has co-authored academic research with Michal Lipson, Alexander Gaeta, Keren Bergman, Ramamoorthy Ramesh, Lane W. Martin, Naresh Shanbhag,[24] Jian-Ping Wang,[25] Paul McEuen, Christopher J. Hardy, Felix Casanova,[26] Ehsan Afshari, Alyssa Apsel, Jacob T. Robinson,[27] :fr:Manuel Bibes spanning Condensed matter physics, Electronics and devices, Photonics, Circuit theory, Computer architecture and hardware for Artificial intelligence areas.

Silicon optical links

Manipatruni's PhD thesis was focused on developing the then nascent field of silicon photonics by progressively scaling the speed of electro-optic modulation from 1 GHz[28] to 12.5 Gbit/s,[29] 18 Gbit/s [30] and 50 Gbit/s[31] on a single physical optical channel driven by a silicon photonic component. The significance of silicon for optical uses can be understood as follows: nearly 95% of modern Integrated circuit technology is based on silicon-based semiconductors which have high productivity in Semiconductor device fabrication due to the use of large single crystal wafers and extraordinary control of the quality of the interfaces. However, Photonic integrated circuits are still majorly manufactured using III-V compound semiconductor materials and II-VI semiconductor compound materials, whose engineering lags silicon industry by several decades (judged by number of wafers and devices produced per year). By showing that silicon can be used as a material to turn light signal on and off, silicon electro-optic modulators allow for use of high-quality engineering developed for the electronics industry to be adopted for photonics/optics industry. This the foundational argument used by silicon electro-optics researchers.[32] This work was paralleled closely at leading industrial research groups at Intel,[33] IBM [34] and Luxtera [35] during 2005–2010 with industry adopting and improving various methods developed at academic research labs. Manipatruni's work showed that it is practically possible to develop free carrier injection modulators (in contrast to carrier depletion modulators) to reach high speed modulation by engineering injection of free carriers via pre-amplification and back-to-back connected injection mode devices.[36]

a silicon micro ring modulator imaged with a surface electron microscope

In combination with Keren Bergman at Columbia University, micro-ring modulator research led to demonstration of a number of firsts in long-distance uses of silicon photonics utilizing silicon based injection mode electro-optic modulators including first demonstration of long-haul transmission using silicon microring modulators[37] first Error-free transmission of microring-modulated BPSK,[38] First Demonstration of 80-km Long-Haul Transmission of 12.5-Gb/s Data Using Silicon Microring Resonator Electro-Optic Modulator,[39] First Experimental Bit-Error-Rate Validation of 12.5-Gb/s Silicon Modulator Enabling Photonic Networks-on-Chip.[40] These academic results have been applied into products widely deployed at Cisco,[41] Intel.[42]

Application for omputing and medical imaging

Manipatruni, Lipson and collaborators at Intel[43] have projected a roadmap that required the use of Silicon micro-ring modulators to meet the bandwidth, linear bandwidth density (bandwidth/cross section length) and area bandwidth density (bandwidth/area) of on-die communication links. While originally considered thermally unstable,[44] by early 2020's micro-ring modulators have received wide adoption for computing needs at Intel [45][46] Ayar Labs,[47] Global foundries [48] and varied optical interconnect usages.

[math]\displaystyle{ E_{switch_Optical_Link}\gt \hbar\omega.V_{receive}.C_{d}.10^{L*\alpha/10}/(\eta_{L}\eta_{D}\eta_{M}\eta_{C}e) +(V_{m}\Theta\Delta.T)/((dn/d\rho)(dT/dn))+(2/B)P_{tune}\Delta\lambda+E_{SD}*(B/(2F_{clock})) }[/math]

synchronization of mechanical vibrtions using optical radiation pressure

The optimal energy of an on-die optical link is written [43] as : where [math]\displaystyle{ V_{receive} }[/math]is the optimal detector voltage (maintaining the bit error rate), [math]\displaystyle{ C_{d} }[/math] detector capacitance, [math]\displaystyle{ V_{m} }[/math] is the modulator drive voltage, [math]\displaystyle{ \Theta, dn/d\rho, dT/dn }[/math] are the electrooptic volume of the optical cavity being stabilized, refractive index change to carrier concentration and spectral sensitivity of the device to refractive index change [math]\displaystyle{ \Delta.T }[/math] is the change in optical transmission, B is the bandwidth of the link, Ptune the power to keep the resonator operational and B the bandwidth of the link at F frequency of the data being serialized.

Manipatruni and Christopher J. Hardy applied integrated photonic links to the Magnetic resonance imaging to improve the signal collection rate from the MRI machines via the signal collection coils [49] while working at the General Electric's GE Global Research facility. The use of optical transduction of the MRI signals[50] can allow significantly higher signal collection arrays within the MRI system increasing the signal throughput, reducing the time to collect the image and overall reduction of the weight of the coils and cost of MRI imaging by reducing the imaging time.[51]

Cavity optomechanics and optical radiation pressure

Manipatruni proposed the first observation that optical radiation pressure leads to non-reciprocity in micro cavity opto-mechanics in 2009 [52][13] in the classical electro-magnetic domain without the use of magnetic isolators. In classical Newtonian optics,[53][54] it was understood that light rays must be able to retrace their path through a given combination of optical media. However, once the momentum of light is taken into account inside a movable media this need not be true in all cases. This work [52][13] proposed that breaking of the reciprocity (i.e. properties of media for forward and backward moving light can be violated) is observable in microscale optomechanical systems due to their small mass, low mechanical losses and high amplification of light due to long confinement times.

Later work has established the breaking of reciprocity in a number of nanophotonic conditions including time modulation and parametric effects in cavities.[55][56][57][58][59][60] Manipatruni and Lipson have also applied the nascent devices in silicon photonics to optical synchronization [61][12] and generation of non-classical beams of light using optical non-linearities.[62][63]

Memory and spintronic devices

Conceptual diagram of two nodes in a circuit connected by a conductance branch: a) two nodes connected by a scalar conductance in a regular circuit; b) two nodes connected by a spin conductance in a spin circuit. c) Conceptual diagram of a spin current tensor when a spin current flows in a 3D space. d) Spin current tensor is reduced to a spin current vector when a direction is implied by a branch of the circuit. The current and the voltages in a spin circuit are 4 component vectors carrying both the scalar current/voltage quantities and vector spin current/voltage quantities. The linearity of the circuit implies that the connecting branch is described by a 4X4 spin conductance matrix.

Manipatruni worked on Spintronics for the development of logic computing devices for computational nodes beyond the existing limits to silicon-based transistors. He developed an extended modified nodal analysis that uses vector circuit theory [64] for spin-based currents and voltages using modified nodal analysis which allows the use of spin components inside VLSI designs used widely in the industry.[65][66] The circuit modeling is based on theoretical work[67] by Supriyo Datta[68][69] and Gerrit E. W. Bauer.[70] Manipatruni's spin circuit models were extensively applied for development of spin logic circuits,[71][72][73] spin interconnects,[74] domain wall interconnects[75] and benchmarking logic[76] and memory devices utilizing spin and magnetic circuits.[77][78]

In 2011, utilizing the discovery of Spin Hall effect and Spin–orbit interaction in heavy metals from Robert Buhrman,[79] Daniel Ralph [80] and Ioan Miron[81] in Period 6 element transition metals [82][81] Manipatruni proposed an integrated spin-hall effect memory[83] (Later named Spin-Orbit Memory to comprehend the complex interplay of interface and bulk components of the spin current generation[84]) combined with modern Fin field-effect transistor transistors[85] to address the growing difficulty with embedded Static random-access memory in modern Semiconductor process technology. SOT-MRAM for SRAM replacement spurred significant research and development leading to successful demonstration of SOT-MRAM combined with Fin field-effect transistors in 22 nm process and 14 nm process at various foundries.[86][87][88]

Working with Jian-Ping Wang,[89] Manipatruni and collaborators were able to show evidence of a 4th elemental ferro-magnet.[90][91][92] Given the rarity of ferro-magnetic materials in elemental form at room temperature, use of a less rare element can help with the adoption of permanent magnet based driven systems for electric vehicles.

Computational logic devices and quantum materials

In 2016, Manipatruni and collaborators proposed a number of changes to the new logic device development by identifying the core criterion for the logic devices for utilization beyond the 2 nm process.[18] The continued slow down the Moore's law as evidenced by slow down of the voltage scaling,[93][94] lithographic node scaling and increasing cost per wafer and complexity of the fabs indicated that Moore's law as it existed in the 2000-2010 era has changed to a less aggressive scaling paradigm.

unified computing framework for logic beyond 2 nm nodes

Manipatruni proposed [18] that spintronic and multiferroic systems are leading candidates for achieving attojoule-class logic gates for computing, thereby enabling the continuation of Moore's law for transistor scaling. However, shifting the materials focus of computing towards oxides and topological materials requires a holistic approach addressing energy, stochasticity and complexity.

The Manipaturni Figure-of-Merit for computational quantum materials is defined as the ratio of " [math]\displaystyle{ E_{switching} }[/math] energy to switch a device at room temperature" to "[math]\displaystyle{ E(\pm\theta) }[/math] energy of thermodynamic stability of the materials compared to vacuum energy, where [math]\displaystyle{ \pm\theta }[/math] is the reversal of the order parameter such as ferro-electric polarization or magnetization of the material"

[math]\displaystyle{ \lambda =E_{switching}/E(\pm\theta) }[/math]

This ratio is universally optimal for a ferro-electric material and compared favorably to spintronic and CMOS switching elements such as MOS transistors and BJTs. The framework (adopted by SIA decadal plan[95]) describes a unified computing framework that uses physical scaling (physics based improvement in device energy and density), mathematical scaling (using information theoretic improvements to allow higher error rate as devices scale to thermodynamic limits) and complexity scaling (architectural scaling that moves from distinct memory & logic units to AI based architectures). Combining Shannon inspired computing allows the physical stochastic errors inherent in highly scaled devices to be mitigated by information theoretic techniques.[96][97]

MESO Logic.jpg

Magneto-electric spin-orbit logic is a design using this methodology for a new logical component that couples magneto-electric effect and spin orbit effects. Compared to CMOS, MESO circuits could potentially require less energy for switching, lower operating voltage, and a higher integration density.[19]

Selected publications and patents

  • Manipatruni, Sasikanth; Nikonov, Dmitri E.; Lin, Chia-Ching; Gosavi, Tanay A.; Liu, Huichu; Prasad, Bhagwati; Huang, Yen-Lin; Bonturim, Everton; Ramamoorthy Ramesh; Young, Ian A. (2018-12-03). "Scalable energy-efficient magnetoelectric spin–orbit logic". Nature. 565 (7737): 35–42. doi:10.1038/s41586-018-0770-2. ISSN 0028-0836
  • Manipatruni, S., Nikonov, D.E. and Young, I.A., 2018. Beyond CMOS computing with spin and polarization. Nature Physics, 14(4), pp. 338–343
  • Manipatruni, S., Nikonov, D.E. and Young, I.A., 2014. Energy-delay performance of giant spin Hall effect switching for dense magnetic memory. Applied Physics Express, 7(10), p. 103001.
  • Manipatruni, S., Nikonov, D.E. and Young, I.A., 2012. Modeling and design of spintronic integrated circuits. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(12), pp. 2801–2814.
  • Pham, V.T., Groen, I., Manipatruni, S., Choi, W.Y., Nikonov, D.E., Sagasta, E., Lin, C.C., Gosavi, T.A., Marty, A., Hueso, L.E. and Young, I.A., 2020. Spin–orbit magnetic state readout in scaled ferromagnetic/heavy metal nanostructures. Nature Electronics, 3(6), pp. 309–315.
  • Chen, Z., Chen, Z., Kuo, C.Y., Tang, Y., Dedon, L.R., Li, Q., Zhang, L., Klewe, C., Huang, Y.L., Prasad, B. and Farhan, A., 2018. Complex strain evolution of polar and magnetic order in multiferroic BiFeO3 thin films. Nature communications, 9(1), pp. 1–9.
  • Xu, Q., Manipatruni, S., Schmidt, B., Shakya, J. and Lipson, M., 2007. 12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. Optics express, 15(2), pp. 430–436.
  • Manipatruni, S., Nikonov, D.E., Lin, C.C., Prasad, B., Huang, Y.L., Damodaran, A.R., Chen, Z., Ramesh, R. and Young, I.A., 2018. Voltage control of unidirectional anisotropy in ferromagnet-multiferroic system. Science advances, 4(11), p.eaat4229.
  • Zhang, M., Wiederhecker, G.S., Manipatruni, S., Barnard, A., McEuen, P. and Lipson, M., 2012. Synchronization of micromechanical oscillators using light. Physical review letters, 109(23), p. 233906.
  • Manipatruni, S., Robinson, J.T. and Lipson, M., 2009. Optical nonreciprocity in optomechanical structures. Physical review letters, 102(21), p. 213903.
  • Fang, M.Y.S., Manipatruni, S., Wierzynski, C., Khosrowshahi, A. and DeWeese, M.R., 2019. Design of optical neural networks with component imprecisions. Optics Express, 27(10), pp. 14009–14029.
  • Chen, L., Preston, K., Manipatruni, S. and Lipson, M., 2009. Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors. Optics express, 17(17), pp. 15248–15256.
  • Dutt, A., Luke, K., Manipatruni, S., Gaeta, A.L., Nussenzveig, P. and Lipson, M., 2015. On-chip optical squeezing. Physical Review Applied, 3(4), p. 044005.

AI and in-memory computing

  • Korgaonkar, K., Bhati, I., Liu, H., Gaur, J., Manipatruni, S., Subramoney, S., Karnik, T., Swanson, S., Young, I. and Wang, H., 2018, June. Density tradeoffs of non-volatile memory as a replacement for SRAM based last level cache. In 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA) (pp. 315–327). IEEE.
  • Pipeline circuit architecture to provide in-memory computation functionality, US20190057050A1 [98]
  • Low synch dedicated accelerator with in-memory computation capability, US20190056885A1 [99]
  • In-memory analog neural cache, US20190057304A1,[100]

See also

References

  1. "Five Outstanding Innovators Under 40 Honored at the 54th Design Automation Conference | IEEE Council on Electronic Design Automation". https://ieee-ceda.org/pages/five-outstanding-innovators-under-40-honored-54th-design-automation-conference. 
  2. "Innovative Young Engineers Selected to Participate in NAE's 2019 U.S. Frontiers of Engineering Symposium". https://nae.edu/211980/Innovative-Young-Engineers-Selected-to-Participate-in-NAEs-2019-US-Frontiers-of-Engineering-Symposium. 
  3. "2016 Mahboob Khan Outstanding Liaison Award Winners - SRC". https://www.src.org/award/khan-liaison/2016/. 
  4. "Semiconductors Meet the Quantum Future and Vice Versa". https://spie.org/news/semiconductors-meet-the-quantum-future-and-vice-versa. 
  5. 5.0 5.1 "Sasikanth Manipatruni". https://scholar.google.com/citations?user=CFyEBQIAAAAJ&hl=en. 
  6. "DAC 2017 | DAC Pavilion: Under 40 Innovator Award Winners". https://www.youtube.com/watch?v=SJJ_8YkzwHA. 
  7. "New quantum materials could take computers beyond the semiconductor era". December 3, 2018. https://news.berkeley.edu/2018/12/03/new-quantum-materials-could-take-computers-beyond-the-semiconductor-era/. 
  8. Community, Nature Portfolio Engineering (April 3, 2020). "Bringing energy-efficient MESO technology a step closer to reality". http://devicematerialscommunity.nature.com/users/383344-felix-casanova/posts/65094-cic-nanogune-and-intel-bring-the-meso-technology-a-step-closer-to-reality. 
  9. "WIPO - Search International and National Patent Collections". https://patentscope.wipo.int/search/en/result.jsf?_vid=P11-LBH61T-57116. 
  10. "High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator". https://scholar.google.com/citations?view_op=view_citation&hl=en&user=CFyEBQIAAAAJ&citation_for_view=CFyEBQIAAAAJ:u-x6o8ySG0sC. 
  11. Xu, Qianfan; Manipatruni, Sasikanth; Schmidt, Brad; Shakya, Jagat; Lipson, Michal (January 22, 2007). "12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators". Optics Express 15 (2): 430–436. doi:10.1364/OE.15.000430. PMID 19532260. Bibcode2007OExpr..15..430X. https://opg.optica.org/oe/abstract.cfm?uri=oe-15-2-430. Retrieved December 9, 2022. 
  12. 12.0 12.1 Zhang, Mian; Wiederhecker, Gustavo S.; Manipatruni, Sasikanth; Barnard, Arthur; McEuen, Paul; Lipson, Michal (December 5, 2012). "Synchronization of Micromechanical Oscillators Using Light". Physical Review Letters 109 (23): 233906. doi:10.1103/PhysRevLett.109.233906. PMID 23368207. Bibcode2012PhRvL.109w3906Z. https://link.aps.org/doi/10.1103/PhysRevLett.109.233906. Retrieved December 9, 2022. 
  13. 13.0 13.1 13.2 Manipatruni, Sasikanth; Robinson, Jacob T.; Lipson, Michal (May 29, 2009). "Optical Nonreciprocity in Optomechanical Structures". Physical Review Letters 102 (21): 213903. doi:10.1103/PhysRevLett.102.213903. PMID 19519108. Bibcode2009PhRvL.102u3903M. https://link.aps.org/doi/10.1103/PhysRevLett.102.213903. Retrieved December 9, 2022. 
  14. Dong, Po; Preble, Stefan F.; Robinson, Jacob T.; Manipatruni, Sasikanth; Lipson, Michal (January 25, 2008). "Inducing Photonic Transitions between Discrete Modes in a Silicon Optical Microcavity". Physical Review Letters 100 (3): 033904. doi:10.1103/PhysRevLett.100.033904. PMID 18232983. Bibcode2008PhRvL.100c3904D. https://link.aps.org/doi/10.1103/PhysRevLett.100.033904. Retrieved December 9, 2022. 
  15. Manipatruni, Sasikanth; Lipson, Michal; Young, Ian A. (March 9, 2013). "Device Scaling Considerations for Nanophotonic CMOS Global Interconnects". IEEE Journal of Selected Topics in Quantum Electronics 19 (2): 8200109. doi:10.1109/JSTQE.2013.2239262. Bibcode2013IJSTQ..1900109M. https://ieeexplore.ieee.org/document/6409381. Retrieved December 4, 2022. 
  16. Manipatruni, Sasikanth; Nikonov, Dmitri E.; Young, Ian A. (December 9, 2012). "Modeling and Design of Spintronic Integrated Circuits". IEEE Transactions on Circuits and Systems I: Regular Papers 59 (12): 2801–2814. doi:10.1109/TCSI.2012.2206465. https://ieeexplore.ieee.org/document/6359950. Retrieved December 4, 2022. 
  17. Manipatruni, Sasikanth; Nikonov, Dmitri E.; Young, Ian A. (January 7, 2016). "Material Targets for Scaling All-Spin Logic". Physical Review Applied 5 (1): 014002. doi:10.1103/PhysRevApplied.5.014002. Bibcode2016PhRvP...5a4002M. https://link.aps.org/doi/10.1103/PhysRevApplied.5.014002. Retrieved December 9, 2022. 
  18. 18.0 18.1 18.2 Manipatruni, Sasikanth; Nikonov, Dmitri E.; Young, Ian A. (April 2018). "Beyond CMOS computing with spin and polarization". Nature Physics 14 (4): 338–343. doi:10.1038/s41567-018-0101-4. Bibcode2018NatPh..14..338M. 
  19. 19.0 19.1 Manipatruni, Sasikanth; Nikonov, Dmitri E.; Lin, Chia-Ching; Gosavi, Tanay A.; Liu, Huichu; Prasad, Bhagwati; Huang, Yen-Lin; Bonturim, Everton et al. (January 2019). "Scalable energy-efficient magnetoelectric spin–orbit logic". Nature 565 (7737): 35–42. doi:10.1038/s41586-018-0770-2. PMID 30510160. 
  20. "Sasi Manipatruni - Chief Technology Officer & Co-Founder - Startup". https://www.linkedin.com/in/sasikanthm/. 
  21. "Kishore Vaigyanik Protsahan Yojana (KVPY) - Scholarships for students interested in science as a career". Kvpy.iisc.ac.in. http://kvpy.iisc.ac.in/main/fellows.htm#1999. 
  22. "Homepage - ifa". https://control.ee.ethz.ch/. 
  23. 23.0 23.1 "Scaling silicon nanophotonic interconnects : silicon electrooptic modulators, slowlight & optomechanical devices". https://cornell.on.worldcat.org/oclc/671537607. 
  24. "Naresh Shanbhag – Selected Publications" (in en). http://shanbhag.ece.illinois.edu/papers.html. 
  25. "Jian-Ping Wang" (in en). https://cse.umn.edu/ece/jian-ping-wang. 
  26. "Fèlix Casanova". https://scholar.google.com/citations?user=uqTiqhYAAAAJ&hl=en. 
  27. "Jacob T. Robinson". https://scholar.google.com/citations?user=xZ92gsAAAAAJ&hl=en. 
  28. Xu, Qianfan; Schmidt, Bradley; Pradhan, Sameer; Lipson, Michal (May 9, 2005). "Micrometre-scale silicon electro-optic modulator". Nature 435 (7040): 325–327. doi:10.1038/nature03569. PMID 15902253. Bibcode2005Natur.435..325X. https://www.nature.com/articles/nature03569. Retrieved December 4, 2022. 
  29. Xu, Qianfan; Manipatruni, Sasikanth; Schmidt, Brad; Shakya, Jagat; Lipson, Michal (2007). "125 Gbit/S carrier-injection-based silicon micro-ring silicon modulators". Optics Express 15 (2): 430–436. doi:10.1364/OE.15.000430. PMID 19532260. Bibcode2007OExpr..15..430X. https://opg.optica.org/oe/abstract.cfm?uri=OE-15-2-430. Retrieved 4 December 2022. 
  30. Manipatruni, Sasikanth; Xu, Qianfan; Schmidt, Bradley; Shakya, Jagat; Lipson, Michal (2007). "High Speed Carrier Injection 18 Gb/S Silicon Micro-ring Electro-optic Modulator". LEOS 2007 - IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings. pp. 537–538. doi:10.1109/LEOS.2007.4382517. ISBN 978-1-4244-0924-2. https://ieeexplore.ieee.org/document/4382517. Retrieved 20 February 2023. 
  31. Manipatruni, Sasikanth; Chen, Long; Lipson, Michal (2010). "Ultra high bandwidth WDM using silicon microring modulators". Optics Express 18 (16): 16858–16867. doi:10.1364/OE.18.016858. PMID 20721078. Bibcode2010OExpr..1816858M. https://opg.optica.org/oe/fulltext.cfm?uri=oe-18-16-16858&id=204064. Retrieved 4 December 2022. 
  32. Soref, R.; Bennett, B. (1987). "Electrooptical effects in silicon". IEEE Journal of Quantum Electronics 23: 123–129. doi:10.1109/JQE.1987.1073206. Bibcode1987IJQE...23..123S. https://ieeexplore.ieee.org/document/1073206. Retrieved 17 July 2023. 
  33. Liu, Ansheng; Liao, Ling; Rubin, Doron; Nguyen, Hat; Ciftcioglu, Berkehan; Chetrit, Yoel; Izhaky, Nahum; Paniccia, Mario (2007). "High-speed optical modulation based on carrier depletion in a silicon waveguide". Optics Express 15 (2): 660–668. doi:10.1364/OE.15.000660. PMID 19532289. Bibcode2007OExpr..15..660L. https://opg.optica.org/oe/viewmedia.cfm?uri=oe-15-2-660&html=true. Retrieved 2022-12-09. 
  34. Green, William M.; Rooks, Michael J.; Sekaric, Lidija; Vlasov, Yurii A. (2007). "Ultra-compact, low RF power, 10 Gb/S silicon Mach-Zehnder modulator". Optics Express 15 (25): 17106–17113. doi:10.1364/OE.15.017106. PMID 19551003. Bibcode2007OExpr..1517106G. https://opg.optica.org/oe/viewmedia.cfm?uri=oe-15-25-17106&html=true. Retrieved 2022-12-09. 
  35. Ding, Ran; Baehr-Jones, Tom; Kim, Woo-Joong; Spott, Alexander; Fournier, Maryse; Fedeli, Jean-Marc; Huang, Su; Luo, Jingdong et al. (April 9, 2011). "Sub-Volt Silicon-Organic Electro-optic Modulator With 500 MHz Bandwidth". Journal of Lightwave Technology 29 (8): 1112–1117. doi:10.1109/JLT.2011.2122244. Bibcode2011JLwT...29.1112D. https://ieeexplore.ieee.org/document/5722965. Retrieved December 4, 2022. 
  36. Manipatruni, Sasikanth; Xu, Qianfan; Schmidt, Bradley; Shakya, Jagat; Lipson, Michal (October 9, 2007). "High Speed Carrier Injection 18 Gb/s Silicon Micro-ring Electro-optic Modulator". LEOS 2007 - IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings. pp. 537–538. doi:10.1109/LEOS.2007.4382517. ISBN 978-1-4244-0924-2. https://ieeexplore.ieee.org/document/4382517. Retrieved December 4, 2022. 
  37. Biberman, Aleksandr; Manipatruni, Sasikanth; Ophir, Noam; Chen, Long; Lipson, Michal; Bergman, Keren (2010). "First demonstration of long-haul transmission using silicon microring modulators". Optics Express 18 (15): 15544–15552. doi:10.1364/OE.18.015544. PMID 20720934. Bibcode2010OExpr..1815544B. https://opg.optica.org/oe/fulltext.cfm?uri=oe-18-15-15544&id=203681. Retrieved 4 December 2022. 
  38. Padmaraju, Kishore; Ophir, Noam; Xu, Qianfan; Schmidt, Bradley; Shakya, Jagat; Manipatruni, Sasikanth; Lipson, Michal; Bergman, Keren (2012). "Error-free transmission of microring-modulated BPSK". Optics Express 20 (8): 8681–8688. doi:10.1364/OE.20.008681. PMID 22513578. Bibcode2012OExpr..20.8681P. https://opg.optica.org/oe/fulltext.cfm?uri=oe-20-8-8681&id=231633. Retrieved 4 December 2022. 
  39. Biberman, Aleksandr; Ophir, Noam; Bergman, Keren; Manipatruni, Sasikanth; Chen, Long; Lipson, Michal (2010). "First Demonstration of 80-km Long-Haul Transmission of 12.5-Gb/S Data Using Silicon Microring Resonator Electro-Optic Modulator". National Fiber Optic Engineers Conference. pp. JWA28. doi:10.1364/NFOEC.2010.JWA28. ISBN 978-1-55752-884-1. https://opg.optica.org/abstract.cfm?uri=nfoec-2010-JWA28. Retrieved 4 December 2022. 
  40. Biberman, Aleksandr; Ophir, Noam; Bergman, Keren; Manipatruni, Sasikanth; Chen, Long; Lipson, Michal (2010). "First Experimental Bit-Error-Rate Validation of 12.5-Gb/S Silicon Modulator Enabling Photonic Networks-on-Chip". Optical Fiber Communication Conference. pp. OMI1. doi:10.1364/OFC.2010.OMI1. ISBN 978-1-55752-885-8. https://opg.optica.org/abstract.cfm?uri=ofc-2010-OMI1. Retrieved 4 December 2022. 
  41. "Optical Transceivers and Coherent Optics". https://www.cisco.com/c/en/us/products/interfaces-modules/transceiver-modules/index.html. 
  42. "Intel® Silicon Photonics Optical Transceiver Products". https://www.intel.com/content/www/us/en/products/network-io/high-performance-fabrics/silicon-photonics.html. 
  43. 43.0 43.1 Manipatruni, S.; Lipson, M.; Young, I. A. (2013). "Device Scaling Considerations for Nanophotonic CMOS Global Interconnects". IEEE Journal of Selected Topics in Quantum Electronics 19 (2). doi:10.1109/JSTQE.2013.2239262. Bibcode2013IJSTQ..1900109M. https://ieeexplore.ieee.org/document/6409381. Retrieved 20 February 2023. 
  44. Manipatruni, Sasikanth; Dokania, Rajeev K.; Schmidt, Bradley; Sherwood-Droz, Nicolás; Poitras, Carl B.; Apsel, Alyssa B.; Lipson, Michal (2008). "Wide temperature range operation of micrometer-scale silicon electro-optic modulators". Optics Letters 33 (19): 2185–2187. doi:10.1364/OL.33.002185. PMID 18830346. Bibcode2008OptL...33.2185M. https://opg.optica.org/ol/fulltext.cfm?uri=ol-33-19-2185&id=172175. Retrieved 7 December 2022. 
  45. SPIE Europe Ltd. "Intel's micro-ring detector paves way to optical server interconnects". Optics.org. https://optics.org/news/11/12/10#:~:text=An%20all-silicon%20detector%20and%20wavelength-multiplexed%20modulators%2C%20both%20based,greater%20use%20of%20integrated%20photonics%20in%20data%20centers. 
  46. "Intel: Advances in silicon photonics can break the I/O "power wall" with less energy, higher throughput". April 12, 2021. https://venturebeat.com/business/intel-advances-in-silicon-photonics-can-break-the-i-o-power-wall-with-less-energy-higher-throughput/. 
  47. Buchbinder, S.; Wang, R.; Kramnik, D.; Van Orden, D.; Khilo, A.; Fini, J.; Sun, C.; Wade, M. et al. (May 9, 2022). "Silicon Microring Modulator for High SFDR Analog Links in Monolithic 45nm CMOS". pp. 1–2. https://ieeexplore.ieee.org/document/9890304. 
  48. Rakowski, Michal; Meagher, Colleen; Nummy, Karen; Aboketaf, Abdelsalam; Ayala, Javier; Bian, Yusheng; Harris, Brendan; Mclean, Kate et al. (March 8, 2020). "45nm CMOS - Silicon Photonics Monolithic Technology (45CLO) for next-generation, low power and high speed optical interconnects". Optical Fiber Communication Conference (OFC) 2020. Optica Publishing Group. pp. T3H.3. doi:10.1364/OFC.2020.T3H.3. ISBN 978-1-943580-71-2. https://opg.optica.org/abstract.cfm?uri=OFC-2020-T3H.3. Retrieved December 4, 2022. 
  49. Hardy, Christopher Judson & Sasikanth Manipatruni, "Photonic system and method for optical data transmission in medical imaging systems", US patent 8847598, published 2014-09-30, assigned to General Electric Company
  50. Manipatruni, Sasikanth & Christopher Judson Hardy, "Nanophotonic system for optical data and power transmission in medical imaging systems", US patent application 2012146646, published 2012-06-14, assigned to General Electric Company, since abandoned.
  51. Edelstein, W. A.; Glover, G. H.; Hardy, C. J.; Redington, R. W. (August 1986). "The intrinsic signal-to-noise ratio in NMR imaging" (in en). Magnetic Resonance in Medicine 3 (4): 604–618. doi:10.1002/mrm.1910030413. PMID 3747821. https://onlinelibrary.wiley.com/doi/10.1002/mrm.1910030413. Retrieved 2022-12-13. 
  52. 52.0 52.1 Manipatruni, Sasikanth; Robinson, Jacob T.; Lipson, Michal (May 31, 2009). "Optical Non-Reciprocity in Optomechanical Structures". Conference on Lasers and Electro-Optics/International Quantum Electronics Conference. Optica Publishing Group. pp. CThB3. doi:10.1364/CLEO.2009.CThB3. ISBN 978-1-55752-869-8. https://opg.optica.org/abstract.cfm?uri=CLEO-2009-CThB3. Retrieved December 4, 2022. 
  53. Potton, R. J. (2004). "Reciprocity in optics". Reports on Progress in Physics 67 (5): 717–754. doi:10.1088/0034-4885/67/5/R03. Bibcode2004RPPh...67..717P. https://iopscience.iop.org/article/10.1088/0034-4885/67/5/R03/meta. 
  54. Mansuripur, Masud (1998). "Reciprocity in Classical Linear Optics". Optics and Photonics News 9 (7): 53. doi:10.1364/OPN.9.7.000053. Bibcode1998OptPN...9...53M. https://opg.optica.org/opn/viewmedia.cfm?uri=opn-9-7-53. Retrieved 7 December 2022. 
  55. Shaltout, Amr; Kildishev, Alexander; Shalaev, Vladimir (2015). "Time-varying metasurfaces and Lorentz non-reciprocity". Optical Materials Express 5 (11): 2459. doi:10.1364/OME.5.002459. Bibcode2015OMExp...5.2459S. https://opg.optica.org/ome/viewmedia.cfm?uri=ome-5-11-2459&html=true. Retrieved 2022-12-09. 
  56. Kittlaus, Eric A.; Jones, William M.; Rakich, Peter T.; Otterstrom, Nils T.; Muller, Richard E.; Rais-Zadeh, Mina (January 9, 2021). "Electrically driven acousto-optics and broadband non-reciprocity in silicon photonics". Nature Photonics 15 (1): 43–52. doi:10.1038/s41566-020-00711-9. Bibcode2021NaPho..15...43K. https://www.nature.com/articles/s41566-020-00711-9. Retrieved December 4, 2022. 
  57. Coulais, Corentin; Sounas, Dimitrios; Alù, Andrea (February 9, 2017). "Static non-reciprocity in mechanical metamaterials". Nature 542 (7642): 461–464. doi:10.1038/nature21044. PMID 28192786. Bibcode2017Natur.542..461C. https://www.nature.com/articles/nature21044. Retrieved December 4, 2022. 
  58. Reiskarimian, Negar; Krishnaswamy, Harish (April 15, 2016). "Magnetic-free non-reciprocity based on staggered commutation". Nature Communications 7 (1): 11217. doi:10.1038/ncomms11217. PMID 27079524. Bibcode2016NatCo...711217R. 
  59. Hafezi, Mohammad; Rabl, Peter (2012). "Optomechanically induced non-reciprocity in microring resonators". Optics Express 20 (7): 7672–7684. doi:10.1364/OE.20.007672. PMID 22453446. Bibcode2012OExpr..20.7672H. https://opg.optica.org/oe/viewmedia.cfm?uri=oe-20-7-7672&html=true. Retrieved 2022-12-09. 
  60. Sounas, Dimitrios L.; Alù, Andrea (December 9, 2017). "Non-reciprocal photonics based on time modulation". Nature Photonics 11 (12): 774–783. doi:10.1038/s41566-017-0051-x. Bibcode2017NaPho..11..774S. https://www.nature.com/articles/s41566-017-0051-x. Retrieved December 4, 2022. 
  61. Manipatruni, Sasikanth; Wiederhecker, Gustavo; Lipson, Michal (May 9, 2011). "Long-range synchronization of optomechanical structures". CLEO:2011 - Laser Applications to Photonic Applications. pp. QWI1. doi:10.1364/QELS.2011.QWI1. ISBN 978-1-55752-910-7. https://ieeexplore.ieee.org/document/5951651. Retrieved December 4, 2022. 
  62. Dutt, Avik; Luke, Kevin; Manipatruni, Sasikanth; Gaeta, Alexander L.; Nussenzveig, Paulo; Lipson, Michal (April 13, 2015). "On-Chip Optical Squeezing". Physical Review Applied 3 (4): 044005. doi:10.1103/PhysRevApplied.3.044005. Bibcode2015PhRvP...3d4005D. https://link.aps.org/doi/10.1103/PhysRevApplied.3.044005. Retrieved December 9, 2022. 
  63. Dutt, Avik; Luke, Kevin; Manipatruni, Sasikanth; Gaeta, Alexander L.; Gaeta, Alexander L.; Nussenzveig, Paulo A.; Lipson, Michal; Lipson, Michal (June 17, 2013). "Observation of On-Chip Optical Squeezing". The Rochester Conferences on Coherence and Quantum Optics and the Quantum Information and Measurement meeting. Optica Publishing Group. pp. M6.67. doi:10.1364/CQO.2013.M6.67. ISBN 978-1-55752-978-7. https://opg.optica.org/abstract.cfm?uri=CQO-2013-M6.67. Retrieved December 4, 2022. 
  64. Manipatruni, Sasikanth; Nikonov, Dmitri E.; Young, Ian A. (2012). "Modeling and Design of Spintronic Integrated Circuits". IEEE Transactions on Circuits and Systems I: Regular Papers 59 (12): 2801–2814. doi:10.1109/TCSI.2012.2206465. https://ieeexplore.ieee.org/document/6359950. Retrieved 20 February 2023. 
  65. Manipatruni, Sasikanth; Nikonov, Dmitri E.; Young, Ian A. (2014). "Vector spin modeling for magnetic tunnel junctions with voltage dependent effects". Journal of Applied Physics 115 (17). doi:10.1063/1.4868495. Bibcode2014JAP...115qB754M. 
  66. Ahmed, Ibrahim; Zhao, Zhengyang; Mankalale, Meghna G.; Sapatnekar, Sachin S.; Wang, Jian-Ping; Kim, Chris H. (2017). "A Comparative Study Between Spin-Transfer-Torque and Spin-Hall-Effect Switching Mechanisms in PMTJ Using SPICE". IEEE Journal on Exploratory Solid-State Computational Devices and Circuits 3: 74–82. doi:10.1109/JXCDC.2017.2762699. Bibcode2017IJESS...3...74A. 
  67. Camsari, Kerem Yunus; Ganguly, Samiran; Datta, Supriyo (June 11, 2015). "Modular Approach to Spintronics". Scientific Reports 5 (1): 10571. doi:10.1038/srep10571. PMID 26066079. Bibcode2015NatSR...510571C. 
  68. Srinivasan, Srikant; Diep, Vinh; Behin-Aein, Behtash; Sarkar, Angik; Datta, Supriyo (2013). "Modeling Multi-Magnet Networks Interacting Via Spin Currents". arXiv:1304.0742 [cond-mat.mes-hall].
  69. Behin-Aein, Behtash; Datta, Deepanjan; Salahuddin, Sayeef; Datta, Supriyo (2010). "Proposal for an all-spin logic device with built-in memory". Nature Nanotechnology 5 (4): 266–270. doi:10.1038/nnano.2010.31. PMID 20190748. Bibcode2010NatNa...5..266B. https://www.nature.com/articles/nnano.2010.31. Retrieved 7 December 2022. 
  70. Brataas, A.; Bauer, G.; Kelly, P. (2006). "Non-collinear magnetoelectronics". Physics Reports 427 (4): 157–255. doi:10.1016/j.physrep.2006.01.001. Bibcode2006PhR...427..157B. https://www.sciencedirect.com/science/article/abs/pii/S0370157306000238. Retrieved 4 December 2022. 
  71. "Google Scholar". https://scholar.google.com/scholar?hl=en&as_sdt=0,38&q=Manipatruni,+Azad. 
  72. Chang, Sou-Chi; Iraei, Rouhollah Mousavi; Manipatruni, Sasikanth; Nikonov, Dmitri E.; Young, Ian A.; Naeemi, Azad (August 9, 2014). "Design and Analysis of Copper and Aluminum Interconnects for All-Spin Logic". IEEE Transactions on Electron Devices 61 (8): 2905–2911. doi:10.1109/TED.2014.2327057. Bibcode2014ITED...61.2905C. https://ieeexplore.ieee.org/document/6834821. Retrieved December 4, 2022. 
  73. Dutta, Sourav; Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.; Naeemi, Azad (November 9, 2015). "Phase-dependent deterministic switching of magnetoelectric spin wave detector in the presence of thermal noise via compensation of demagnetization". Applied Physics Letters 107 (19): 192404. doi:10.1063/1.4935690. Bibcode2015ApPhL.107s2404D. https://aip.scitation.org/doi/abs/10.1063/1.4935690. Retrieved December 4, 2022. 
  74. Bonhomme, Phillip; Manipatruni, Sasikanth; Iraei, Rouhollah M.; Rakheja, Shaloo; Chang, Sou-Chi; Nikonov, Dmitri E.; Young, Ian A.; Naeemi, Azad (May 9, 2014). "Circuit Simulation of Magnetization Dynamics and Spin Transport". IEEE Transactions on Electron Devices 61 (5): 1553–1560. doi:10.1109/TED.2014.2305987. Bibcode2014ITED...61.1553B. https://ieeexplore.ieee.org/document/6780619. Retrieved December 4, 2022. 
  75. Dutta, Sourav; Chang, Sou-Chi; Kani, Nickvash; Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.; Naeemi, Azad (May 8, 2015). "Non-volatile Clocked Spin Wave Interconnect for Beyond-CMOS Nanomagnet Pipelines". Scientific Reports 5 (1): 9861. doi:10.1038/srep09861. PMID 25955353. Bibcode2015NatSR...5E9861D. 
  76. Dutta, Sourav; Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.; Naeemi, Azad (May 15, 2017). "Overcoming thermal noise in non-volatile spin wave logic". Scientific Reports 7 (1): 1915. doi:10.1038/s41598-017-01995-8. PMID 28507305. Bibcode2017NatSR...7.1915D. 
  77. Shanbhag, Naresh R.; Verma, Naveen; Kim, Yongjune; Patil, Ameya D.; Varshney, Lav R. (January 9, 2019). "Shannon-Inspired Statistical Computing for the Nanoscale Era". Proceedings of the IEEE 107 (1): 90–107. doi:10.1109/JPROC.2018.2869867. 
  78. Nikonov, Dmitri E.; Young, Ian A. (December 9, 2013). "Overview of Beyond-CMOS Devices and a Uniform Methodology for Their Benchmarking". Proceedings of the IEEE 101 (12): 2498–2533. doi:10.1109/JPROC.2013.2252317. https://ieeexplore.ieee.org/document/6527325. Retrieved December 4, 2022. 
  79. "Robert Buhrman". https://scholar.google.com/citations?user=A7HqfEIAAAAJ&hl=en. 
  80. "Dan Ralph". https://scholar.google.com/citations?user=xUNJJloAAAAJ&hl=en. 
  81. 81.0 81.1 Miron, Ioan Mihai; Garello, Kevin; Gaudin, Gilles; Zermatten, Pierre-Jean; Costache, Marius V.; Auffret, Stéphane; Bandiera, Sébastien; Rodmacq, Bernard et al. (August 2011). "Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection" (in en). Nature 476 (7359): 189–193. doi:10.1038/nature10309. ISSN 1476-4687. PMID 21804568. Bibcode2011Natur.476..189M. https://www.nature.com/articles/nature10309. Retrieved 2022-12-23. 
  82. Liu, Luqiao; Pai, Chi-Feng; Li, Y.; Tseng, H. W.; Ralph, D. C.; Buhrman, R. A. (2012-05-04). "Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum" (in en). Science 336 (6081): 555–558. doi:10.1126/science.1218197. ISSN 0036-8075. PMID 22556245. Bibcode2012Sci...336..555L. https://www.science.org/doi/10.1126/science.1218197. Retrieved 2022-12-23. 
  83. Manipatruni, Sasikanth; Nikonov, Dmitri E.; Young, Ian A. (2014-10-01). "Voltage and Energy-Delay Performance of Giant Spin Hall Effect Switching for Magnetic Memory and Logic". Applied Physics Express 7 (10): 103001. doi:10.7567/APEX.7.103001. ISSN 1882-0778. 
  84. Manchon, A.; Koo, H. C.; Nitta, J.; Frolov, S. M.; Duine, R. A. (September 2015). "New perspectives for Rashba spin–orbit coupling" (in en). Nature Materials 14 (9): 871–882. doi:10.1038/nmat4360. ISSN 1476-4660. PMID 26288976. Bibcode2015NatMa..14..871M. https://www.nature.com/articles/nmat4360. Retrieved 2022-12-24. 
  85. Manipatruni, Sasikanth; Dmitri Nikonov & Ian Young, "Spin hall effect memory", US patent 9281467, published 2016-03-08, assigned to Intel Corporation
  86. Garello, K.; Yasin, F.; Couet, S.; Souriau, L.; Swerts, J.; Rao, S.; Van Beek, S.; Kim, W. et al. (June 2018). "SOT-MRAM 300MM Integration for Low Power and Ultrafast Embedded Memories". 2018 IEEE Symposium on VLSI Circuits. pp. 81–82. doi:10.1109/VLSIC.2018.8502269. ISBN 978-1-5386-4214-6. https://ieeexplore.ieee.org/document/8502269. Retrieved 2022-12-23. 
  87. Sato, Noriyuki; Allen, Gary A.; Benson, William P.; Buford, Benjamin; Chakraborty, Atreyee; Christenson, Michael; Gosavi, Tanay A.; Heil, Philip E. et al. (June 2020). "CMOS Compatible Process Integration of SOT-MRAM with Heavy-Metal Bi-Layer Bottom Electrode and 10ns Field-Free SOT Switching with STT Assist". 2020 IEEE Symposium on VLSI Technology. pp. 1–2. doi:10.1109/VLSITechnology18217.2020.9265028. ISBN 978-1-7281-6460-1. https://ieeexplore.ieee.org/document/9265028. Retrieved 2022-12-23. 
  88. Song, M. Y.; Lee, C. M.; Yang, S. Y.; Chen, G. L.; Chen, K. M.; Wang, I J.; Hsin, Y. C.; Chang, K. T. et al. (June 2022). "High speed (1ns) and low voltage (1.5V) demonstration of 8Kb SOT-MRAM array". 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). pp. 377–378. doi:10.1109/VLSITechnologyandCir46769.2022.9830149. ISBN 978-1-6654-9772-5. https://ieeexplore.ieee.org/abstract/document/9830149/authors#authors. Retrieved 2022-12-23. 
  89. "Jian-Ping Wang". https://scholar.google.com/citations?user=4JUraZcAAAAJ&hl=en. 
  90. Quarterman, P.; Sun, Congli; Garcia-Barriocanal, Javier; Dc, Mahendra; Lv, Yang; Manipatruni, Sasikanth; Nikonov, Dmitri E.; Young, Ian A. et al. (May 25, 2018). "Demonstration of Ru as the 4th ferromagnetic element at room temperature". Nature Communications 9 (1): 2058. doi:10.1038/s41467-018-04512-1. PMID 29802304. Bibcode2018NatCo...9.2058Q. 
  91. "Researchers Discover 4th Room-Temperature Ferromagnetic Element: Ruthenium | Materials Science, Physics". Sci-News.com. 2018-05-29. https://www.sci.news/physics/ruthenium-room-temperature-ferromagnetic-element-06046.html#:~:text=A%20platinum%2Dgroup%20chemical%20element,or%20are%20attracted%20to%20magnets. 
  92. "Ruthenium: the latest Ferromagnetic material on the block". 29 May 2018. https://www.elektormagazine.com/news/gadolinium-is-the-new-ferromagnetic-material-on-the-block. 
  93. Horowitz, M. Computing's energy problem (and what we can do about it). In Solid-State Circuits Conference Digest of Technical Papers 2014 10–14 (IEEE, 2014)
  94. Shahidi, Ghavam (January 1, 2019). "Chip Power Scaling in Recent CMOS Technology Nodes". IEEE Access 7: 851–856. doi:10.1109/ACCESS.2018.2885895. Bibcode2019IEEEA...7..851S. https://research.ibm.com/publications/chip-power-scaling-in-recent-cmos-technology-nodes. Retrieved December 4, 2022. 
  95. "Decadal Plan for Semiconductors - SRC". https://www.src.org/about/decadal-plan/. 
  96. Shanbhag, Naresh R.; Verma, Naveen; Kim, Yongjune; Patil, Ameya D.; Varshney, Lav R. (2019). "Shannon-Inspired Statistical Computing for the Nanoscale Era". Proceedings of the IEEE 107: 90–107. doi:10.1109/JPROC.2018.2869867. 
  97. Patil, Ameya D.; Manipatruni, Sasikanth; Nikonov, Dmitri E.; Young, Ian A.; Shanbhag, Naresh R. (2019). "Error-Resilient Spintronics via the Shannon- Inspired Model of Computation". IEEE Journal on Exploratory Solid-State Computational Devices and Circuits 5 (1): 10–18. doi:10.1109/JXCDC.2019.2909912. Bibcode2019IJESS...5...10P. 
  98. "Pipeline circuit architecture to provide in-memory computation functionality". https://patents.google.com/patent/US20190057050A1/en?inventor=Manipatruni,&assignee=Mathuriya&oq=Manipatruni,+Mathuriya. 
  99. "Low synch dedicated accelerator with in-memory computation capability". https://patents.google.com/patent/US20190056885A1/en?inventor=Manipatruni,&assignee=Mathuriya&oq=Manipatruni,+Mathuriya. 
  100. "In-memory analog neural cache". https://patents.google.com/patent/US20190057304A1/en?inventor=Manipatruni,&assignee=Mathuriya&oq=Manipatruni,+Mathuriya.