Böttcher's equation

From HandWiki

Böttcher's equation, named after Lucjan Böttcher, is the functional equation

[math]\displaystyle{ F(h(z)) = (F(z))^n }[/math]

where

  • h is a given analytic function with a superattracting fixed point of order n at a, (that is, [math]\displaystyle{ h(z)=a+c(z-a)^n+O((z-a)^{n+1}) ~, }[/math] in a neighbourhood of a), with n ≥ 2
  • F is a sought function.

The logarithm of this functional equation amounts to Schröder's equation.

Solution

Solution of functional equation is a function in implicit form.

Lucian Emil Böttcher sketched a proof in 1904 on the existence of solution: an analytic function F in a neighborhood of the fixed point a, such that:[1]

[math]\displaystyle{ F(a)= 0 }[/math]

This solution is sometimes called:

The complete proof was published by Joseph Ritt in 1920,[3] who was unaware of the original formulation.[4]

Böttcher's coordinate (the logarithm of the Schröder function) conjugates h(z) in a neighbourhood of the fixed point to the function zn. An especially important case is when h(z) is a polynomial of degree n, and a = ∞ .[5]

Explicit

One can explicitly compute Böttcher coordinates for:[6]

Examples

For the function h and n=2[7]

[math]\displaystyle{ h(x)= \frac{x^2}{1 - 2x^2} }[/math]

the Böttcher function F is:

[math]\displaystyle{ F(x)= \frac{x}{1 + x^2} }[/math]

Applications

Böttcher's equation plays a fundamental role in the part of holomorphic dynamics which studies iteration of polynomials of one complex variable.

Global properties of the Böttcher coordinate were studied by Fatou[8] [9] and Douady and Hubbard.[10]

See also

References

  1. Böttcher, L. E. (1904). "The principal laws of convergence of iterates and their application to analysis (in Russian)". Izv. Kazan. Fiz.-Mat. Obshch. 14: 155–234. 
  2. J. F. Ritt. On the iteration of rational functions . Trans. Amer. Math. Soc. 21 (1920) 348-356. MR 1501149.
  3. Ritt, Joseph (1920). "On the iteration of rational functions". Trans. Amer. Math. Soc. 21 (3): 348–356. doi:10.1090/S0002-9947-1920-1501149-6. 
  4. Stawiska, Małgorzata (November 15, 2013). "Lucjan Emil Böttcher (1872–1937) - The Polish Pioneer of Holomorphic Dynamics". arXiv:1307.7778 [math.HO].
  5. Cowen, C. C. (1982). "Analytic solutions of Böttcher's functional equation in the unit disk". Aequationes Mathematicae 24: 187–194. doi:10.1007/BF02193043. 
  6. math.stackexchange question: explicitly-calculating-greens-function-in-complex-dynamics
  7. Chaos by Arun V. Holden Princeton University Press, 14 lip 2014 - 334
  8. Alexander, Daniel S.; Iavernaro, Felice; Rosa, Alessandro (2012). Early Days in Complex Dynamics: A history of complex dynamics in one variable during 1906–1942. ISBN 978-0-8218-4464-9. http://bookstore.ams.org/hmath-38/. 
  9. Fatou, P. (1919). "Sur les équations fonctionnelles, I". Bulletin de la Société Mathématique de France 47: 161–271. doi:10.24033/bsmf.998. http://www.numdam.org/item?id=BSMF_1919__47__161_0. ; Fatou, P. (1920). "Sur les équations fonctionnelles, II". Bulletin de la Société Mathématique de France 48: 33–94. doi:10.24033/bsmf.1003. http://www.numdam.org/item?id=BSMF_1920__48__33_0. ; Fatou, P. (1920). "Sur les équations fonctionnelles, III". Bulletin de la Société Mathématique de France 48: 208–314. doi:10.24033/bsmf.1008. http://www.numdam.org/item?id=BSMF_1920__48__208_1. 
  10. Douady, A.; Hubbard, J. (1984). "Étude dynamique de polynômes complexes (première partie)". Publ. Math. Orsay. http://portail.mathdoc.fr/PMO/afficher_notice.php?id=PMO_1984_A1. Retrieved 2012-01-22. ; Douady, A.; Hubbard, J. (1985). "Étude dynamique des polynômes convexes (deuxième partie)". Publ. Math. Orsay. http://portail.mathdoc.fr/PMO/afficher_notice.php?id=PMO_1985_A3. Retrieved 2012-01-22.