Astronomy:List of largest known stars

From HandWiki
Short description: None

Below are lists of the largest stars currently known, ordered by radius and separated into categories by galaxy. The unit of measurement used is the radius of the Sun (approximately 695,700 km; 432,300 mi).[1]

Overview

Although red supergiants are often considered the largest stars, some other star types have been found to temporarily increase significantly in radius, such as during LBV eruptions or luminous red novae. Luminous red novae appear to expand extremely rapidly, reaching thousands to tens of thousands of solar radii within only a few months, significantly larger than the largest red supergiants.[2]

Some studies use models that predict high-accreting Population III or Population I supermassive stars (SMSs) in the very early universe could have evolved "red supergiant protostars". These protostars are thought to have accretion rates be larger than the rate of contraction, resulting in lower temperatures but with radii reaching up to many tens of thousands of R, comparable to some of the largest known black holes.[3][4][5]

Angular diameters

The angular diameters of stars can be measured directly using stellar interferometry. Other methods can use lunar occultations or from eclipsing binaries, which can be used to test indirect methods of finding stellar radii. Only a few useful supergiant stars can be occulted by the Moon, including Antares A (Alpha Scorpii A). Examples of eclipsing binaries are Epsilon Aurigae (Almaaz), VV Cephei, and V766 Centauri (HR 5171). Angular diameter measurements can be inconsistent because the boundary of the very tenuous atmosphere (opacity) differs depending on the wavelength of light in which the star is observed.

Uncertainties remain with the membership and order of the lists, especially when deriving various parameters used in calculations, such as stellar luminosity and effective temperature. Often stellar radii can only be expressed as an average or be within a large range of values. Values for stellar radii vary significantly in different sources and for different observation methods.

All the sizes stated in these lists have inaccuracies and may be disputed. The lists are still a work in progress and parameters are prone to change.

Caveats

Various issues exist in determining accurate radii of the largest stars, which in many cases do display significant errors. The following lists are generally based on various considerations or assumptions; these include:

  • Stellar radii or diameters are usually derived only approximately using the Stefan–Boltzmann law for the deduced stellar luminosity and effective surface temperature.
  • Stellar distances, and their errors, for most stars, remain uncertain or poorly determined.
  • Many supergiant stars have extended atmospheres, and many are within opaque dust shells, making their true effective temperatures and surfaces highly uncertain.[citation needed]
  • Many extended supergiant atmospheres also significantly change in size over time, regularly or irregularly pulsating over several months or years as variable stars. This makes adopted luminosities poorly known and may significantly change the quoted radii.
  • Other direct methods for determining stellar radii rely on lunar occultations or from eclipses in binary systems. This is only possible for a very small number of stars.
  • Most distance estimates for red supergiants come from stellar cluster or association membership, because it is difficult to calculate accurate distances for red supergiants that are not part of any cluster or association.
  • In these lists are some examples of extremely distant extragalactic stars, which may have slightly different properties and natures than the currently largest known stars in the Milky Way. For example, some red supergiants in the Magellanic Clouds are suspected to have slightly different limiting temperatures and luminosities. Such stars may exceed accepted limits by undergoing large eruptions or changing their spectral types over just a few months (or potentially years).[6][7]

Lists

The following lists show the largest known stars based on the host galaxy.

Milky Way

List of the largest known stars in the Milky Way
Star name Solar radii
(Sun = 1)
Method[lower-alpha 1] Notes
Orbit of Saturn 2,0472,049.9[8][lower-alpha 2] Reported for reference
WOH G64 (For comparison) 1,540[9][10][11][12][13] ± 77[9] L/Teff Located in the Large Magellanic Cloud.

Possibly the largest known star.[9][10][14][11]

Theoretical limit of star size (Milky Way) ~1,500[15] This value comes from the rough average radii of the three largest stars studied in the paper. It is consistent with the largest possible stellar radii predicted from the current evolutionary theory, and it is believed that stars above this radius would be too unstable and simply do not form.[15]
Reported for reference
RSGC1-F01 Template:Solar radius calculator,[16] 1,450,[17] Error in {{val}}: parameter 1 is not a valid number.[18] L/Teff
VY Canis Majoris 1,420±120[19][20][21] AD An extreme oxygen-rich red hypergiant that has experienced two dimmming periods in the 20th century where the star became dimmer by up to 2.5 magnitudes.[22] Potentially the largest known star in the Milky Way.[20]
CM Velorum 1,416.24+0.40
−0.96
[23]
L/Teff
AH Scorpii 1,411±124[24][25] AD
RSGC1-F06 Error in {{val}}: parameter 1 is not a valid number.[18] L/Teff
Stephenson 2 DFK 2 Error in {{val}}: parameter 1 is not a valid number.[18] L/Teff Another red supergiant, Stephenson 2 DFK 1 has an estimated radius of 2,150 R. However, its luminosity is significantly above the Humphreys-Davidson limit and it is likely not a member of the Stephenson 2 cluster.[18][26]
Stephenson 2 DFK 49 Error in {{val}}: parameter 1 is not a valid number.[18] L/Teff A K-type star similar to the yellow hypergiant IRC +10420 that has left its red supergiant stage.[18]
CD-26 5055 1,280+20
−123
[23]
L/Teff
AS Cephei 1,263+19
−9
[23]
L/Teff
RSGC1-F10 Error in {{val}}: parameter 1 is not a valid number.[18] L/Teff
Westerlund 1 W237 (Westerlund 1 BKS B) 1,241±70[27] L/Teff Possibly a foreground giant.[28] If so, it might be only 216 solar radii.[29]
S Persei 1,212[30] – 1,364±6[31] AD
IRC -10414 ~1,200[32] L/Teff
V517 Monocerotis 1,196+80
−159
[23]
L/Teff
PZ Cassiopeiae 1,190±238(–1,940±388),[15] 1,364[33] L/Teff
RSGC1-F05 Error in {{val}}: parameter 1 is not a valid number.[18] L/Teff
GCIRS 7 1,170±60[34]1,368,[35] Template:Solar radius calculator[36] AD & L/Teff
Westerlund 1 W26 (Westerlund 1 BKS AS) 1,165±581,221±120[27] L/Teff
RSGC1-F08 Error in {{val}}: parameter 1 is not a valid number.[18] L/Teff
HD 143183 1,147[37] L/Teff
V354 Cephei 1,139[33] L/Teff
MY Cephei Error in {{val}}: parameter 1 is not a valid number.[38] L/Teff
RSGC1-F02 Template:Solar radius calculator,[16] Error in {{val}}: parameter 1 is not a valid number.,[18] 1,500[17] L/Teff
VX Sagitarii 1,120 – 1,550,[39] 1,200,[40] 1,356,[41] Formatting error: invalid input when rounding[42] L/Teff The most luminous known Asymptotic giant branch star.[41] Widely recognised as being among the largest known stars.[43]
Orbit of Jupiter 1,114.51,115.8[8][lower-alpha 2] Reported for reference
RW Cygni 1,103+251
−177
[44]
AD
RSGC1-F04 Template:Solar radius calculator,[16] 1,100,[17] Error in {{val}}: parameter 1 is not a valid number.[18] L/Teff
RT Carinae 1,090±218[15] L/Teff
UU Persei 1,079+9
−8
[23]
L/Teff
LL Pegasi 1,074[45] L/Teff
V396 Centauri 1,070±214[15]1,145.31[46] L/Teff & ?
HD 126577 1,066+9
−32
[23]
L/Teff
V766 Centauri Aa 1,060–1,160[47] ? V766 Centauri Aa is a rare variable yellow hypergiant.
VV Cephei A 1,050[48] AD Widely recognised as being among the largest known stars.[43]
RSGC1-F11 Error in {{val}}: parameter 1 is not a valid number.[18] L/Teff
BC Cygni 1,031[49]1,187+34
−37
[23]
L/Teff A more detailed but older study gives values of 1,081 R (8561,375) for the year 2000, and 1,303 R (1,0211,553) for the year 1900.[50]
KY Cygni 1,032[49]–(1,420±2842,850±570)[15] L/Teff
RSGC1-F13 Error in {{val}}: parameter 1 is not a valid number.,[18] 1,430,[17] Template:Solar radius calculator[16] L/Teff
V602 Carinae 1,015[51] – 1,050±165[52] AD
CK Carinae 1,0131,060±212[15] L/Teff
KW Sagittarii 1,009±142[24][25] AD
RSGC1-F07 Error in {{val}}: parameter 1 is not a valid number.[18] L/Teff
V349 Carinae 1,002+12
−74
[23]
L/Teff
IRAS 18111-2257 ~Formatting error: invalid input when rounding[53] (~8×1013 – 1×1014 cm) L/Teff Estimated based on the bolometric luminosity and assumed effective temperature of 2,000 K. Another period-luminosity-derived luminosity for this star results in a radius of 1,730 R.[53]
RSGC1-F09 Error in {{val}}: parameter 1 is not a valid number.[18] L/Teff
MSX6C G086.5890-00.7718 (Error in {{val}}: parameter 1 is not a valid number.Error in {{val}}: parameter 1 is not a valid number.)[54]1,196.91+6.31
−6.35
[23]
L/Teff Lower values based on the Gaia DR3 effective temperature and the luminosity of Levesque et al. (2005) and that of Messineo & Brown (2019). Higher value based on the GSP Phot-Aeneas library using BR/RP spectra in Gaia DR3.
μ Cephei (Herschel's Garnet Star) 972±228,[55] 1,000 – 1,200,[56] 1,259,[57] 1,420,[15][56] 1,500[43] AD Widely recognised as being among the largest known stars.[43]
RSGC1-F12 Error in {{val}}: parameter 1 is not a valid number.[18] L/Teff
RSGC1-F03 Error in {{val}}: parameter 1 is not a valid number.,[18] 1,200,[17] Template:Solar radius calculator[16] L/Teff
Stephenson 2 DFK 5 911[18] L/Teff
RW Cephei 900–1,760,[58] Template:Solar radius calculator[59] AD & L/Teff
NSV 25875 891[60] L/Teff
Trumpler 27 MMU 1 875.86+5.5
−11.83
[23]
L/Teff
V437 Scuti 874[60] L/Teff
V669 Cassiopeiae 859[60] L/Teff
Westerlund 1 W20 (Westerlund 1 BKS D) 858±48[27] L/Teff
Stephenson 2 DFK 3 855[18] L/Teff
BI Cygni 851[61]1,240±248[15] L/Teff
V1185 Scorpii 830[60] L/Teff
6 Geminorum 821[31] L/Teff
AZ Cygni 814+175
−124
[44]911+57
−50
[62]
AD Estimated based on data from the CHARA array, higher value is an average of calculated radii based on the LDD angular diameter. Another paper estimates 856+20
−14
 R (2011), 927+21
−15
 R (2012), 890+21
−15
 R (2014), 895+21
−15
 R (2015) and 890+21
−15
 R (2016) based on the same data.[31]
U Arietis 801±205[63] AD
RT Ophiuchi 801±217[64] AD
BO Carinae 790±158[15] L/Teff
SU Persei 780±156[15]1,139+34
−23
[31]
L/Teff Higher value is one of three radii (1,139+34
−23
 R (2015), 1,044+31
−21
 R (August 2016) and 1,095+33
−22
 R (October 2016)) measured from observations by the CHARA array.
GP Cassiopeiae 771.74+0.23
−0.86
[23]
L/Teff
RS Persei 770±30[65] AD
V355 Cephei 770±154[15] L/Teff
GU Cephei A 767[46] ?
Betelgeuse (α Orionis) 764+116
−62
,[66] 944 ± 157,[67] 1,021,[68] 1,074+232
−165
,[67] 1,259,[67] 1,268,[67] 1,285,[67] ~1,300,[67] 1,409+319
−229
[69][67]
? Tenth brightest star in the night sky.[70] Widely recognised as being among the largest known stars,[43] radius decreased to ~500 R during the 2020 great dimming event.[71]
IRAS 10176-5802 751.2+0.4
−0.6
[23]–(Error in {{val}}: parameter 1 is not a valid number.Error in {{val}}: parameter 1 is not a valid number.)[54]
L/Teff Lower value based on the GSP Phot-Aeneas library using BR/RP spectra in Gaia DR3. Higher values based on the Gaia DR3 effective temperature and the luminosity of Levesque et al. (2005) and that of Messineo & Brown (2019).
HD 303250 750±150[15] L/Teff
GY Aquilae Template:Solar radius calculator[25] – Formatting error: invalid input when rounding[42]
UU Pegasi 742±193[64] AD
Stephenson 2 DFK 10 730[18] L/Teff
Westerlund 1 W75 (Westerlund 1 BKS E) 722±36[27] L/Teff
V Camelopardalis 716±185[64] AD
V923 Centauri 716[46] ?
S Canis Minoris 710[72]
GCIRS 12N Template:Solar radius calculator[73] L/Teff
V528 Carinae 700±140[15] L/Teff
The following well-known stars are listed for the purpose of comparison.
Antares A (α Scorpii) 680[74] AD Fourteenth brightest star in the night sky.[70] Widely recognised as being among the largest known stars.[43]
119 Tauri (CE Tauri, Ruby Star) 587 – 593[75] AD
CW Leonis 560[76] L/Teff The nearest carbon star.
Unurgunite (σ Canis Majoris) 420±84[15] L/Teff
V838 Monocerotis 364[77] L/Teff During the 2002 Red Nova, the star's radius may have increased up to 3,190 R.[78]
La Superba (Y Canum Venaticorum) 342[79] AD
Mira A (ο Ceti) 332–402[80] AD
Orbit of Mars 322323.1[8][lower-alpha 2] Reported for reference
Pistol Star (V4647 Sagittarii) 306[81] ?
R Doradus 298±21[82] AD The extrasolar star with the largest apparent size.
Rasalgethi A (α Herculis) 284±60 (264303)[83] L/Teff
Cygnus OB2#12 246[84] ? One of the most massive and luminous stars known.
η Carinae 240[85] ? During the 1843 Great Eruption, the star's radius may have increased up to 4,319–6,032 R.[86]
Wezen (δ Canis Majoris) 215±66[87] AD Thirty-sixth brightest star in the night sky.[70]
Orbit of Earth (~1 AU) 214[8][lower-alpha 2] Reported for reference
Enif (ε Pegasi) 210.4–210.7[88] ?
Suhail (λ Velorum) 210[89] ?
Deneb (α Cygni) 203±17[90] ? Eighteenth brightest star in the night sky.[70]
Orbit of Venus 158.6[8][lower-alpha 2] Reported for reference
Gacrux (γ Crucis) 120[91] Twenty-sixth brightest star in the night sky.
Orbit of Mercury 82.984.6[8][lower-alpha 2] Reported for reference
Rigel (β Orionis) 78.9 ± 7.4[92] Seventh brightest star in the night sky.
Canopus (α Carinae) 73.3[93] Second brightest star in the night sky.
Aldebaran (α Tauri) 45.1[94] Fourteenth brightest star in the night sky.
Arcturus (α Boötis) 25.4 ± 0.2[95] This is the nearest red giant to the Earth, and the fourth brightest star in the night sky.
Pollux (β Geminorum) 9.06 ± 0.03[96] The nearest giant star to the Earth.
Regulus A (α Leonis) 4.35 ± 0.1[96] The nearest B-type star to the Earth.
Vega (α Lyrae) 2.726±0.006 × 2.418±0.012[97] Fifth brightest star in the night sky.[70]
Sirius A (α Canis Majoris) 1.711[98] The brightest star in the night sky.
Rigil Kentaurus (α Centauri) 1.2175[99] Third brightest star in the night sky.
Sun 1 The largest object in the Solar System.

Magellanic Clouds

List of the largest known stars in the Magellanic Clouds
Star name Solar radii
(Sun = 1)
Galaxy Method[lower-alpha 1] Notes

L/Teff

WOH G64 1,540[9][10][11][12][13] ± 77[9] Large Magellanic Cloud L/Teff Surrounded by a large dust cloud.[100][101] Possibly the largest known star.[9][10][14][11]
IRAS 05280–6910 1,367[102] Large Magellanic Cloud L/Teff The most reddened object in the Large Magellanic Cloud.[12]
IRAS 05346-6949 1,211[103] Large Magellanic Cloud L/Teff It has an estimated mass-loss rate of 0.0017 M (566 Earths) per year, the highest for any star.[103]
HV 2242 1,160[104] – Template:Solar radius calculator[105] Large Magellanic Cloud L/Teff
W60 B90 (WOH S264) 1,149[106]1,390+130
−110
[10]
Large Magellanic Cloud L/Teff Further investigation is needed to constrain the luminosity and radius with more certainty.[10]
MSX SMC 018 1,119[103] Small Magellanic Cloud L/Teff
WOH S338 1,100[104] Large Magellanic Cloud L/Teff
IRAS 04516-6902 1,085 – 1,283[102] Large Magellanic Cloud L/Teff
MSX LMC 589 1,051[106] Large Magellanic Cloud L/Teff
IRAS 05402-6956 1,032[102] Large Magellanic Cloud L/Teff
IRAS 04509-6922 (1,027-2,249)[102]–1,187[106] Large Magellanic Cloud L/Teff
UCAC2 2674864 (HV 2834) 990+115
−100
[10]
Large Magellanic Cloud L/Teff
HV 2362 Template:Solar radius calculator[105] – 1,030[104] Large Magellanic Cloud L/Teff
MG73 59 979[107] Large Magellanic Cloud L/Teff A yellow supergiant.
HD 268757 979[107] Large Magellanic Cloud L/Teff A G8 yellow hypetgiant.
LMC 147199 Template:Solar radius calculator[105] – 990[104] Large Magellanic Cloud L/Teff
LMC 66778 Template:Solar radius calculator[105] – 990[104] Large Magellanic Cloud L/Teff
WOH S457 902±45[108] Large Magellanic Cloud L/Teff
IRAS 04498-6842 (LI-LMC 60) (898-1,660)[102] – Template:Solar radius calculator[106] – Template:Solar radius calculator,[12] Template:Solar radius calculator[105] Large Magellanic Cloud L/Teff Lower value derived from fitting models that assume the star's effective temperature to be 3,400 K. Higher value based on the measured effective temperature from van Loon et al. (2005). A newer paper estimates parameters that would result in a radius of 1,765 R.[12]
HV 12185 890+55
−65
[10]
Large Magellanic Cloud L/Teff
HV 12793 880+45
−65
[10]
Large Magellanic Cloud L/Teff
WOH S57 875+70
−60
[10]
Large Magellanic Cloud L/Teff
SP77 28-2 825±60[10] Large Magellanic Cloud L/Teff
SP77 22-9 Template:Solar radius calculator[105] – 850[104] Large Magellanic Cloud L/Teff
Z Doradus 824±108[108]–956[106] Large Magellanic Cloud L/Teff
HD 269723 814[107]–829[109] Large Magellanic Cloud L/Teff A yellow hypergiant.
SP77 40-7 Template:Solar radius calculator[105] – 810[104] Large Magellanic Cloud L/Teff
W61 19-24 780+50
−70
[10]
Large Magellanic Cloud L/Teff
WOH S28 780[104] Large Magellanic Cloud L/Teff
SP77 48-6 768[109] Large Magellanic Cloud L/Teff
WOH S452 762±275[108] Large Magellanic Cloud L/Teff
WOH S438 757±211[108] Large Magellanic Cloud L/Teff
LMC 139027 Template:Solar radius calculator[105] – 790[104] Large Magellanic Cloud L/Teff
SP77 45-16 Template:Solar radius calculator[105] – 800[104] Large Magellanic Cloud L/Teff
SP77 54-27 750[104] – Template:Solar radius calculator[105] – 800[104] Large Magellanic Cloud L/Teff
SP77 39-17 Template:Solar radius calculator[105] – 760[104] Large Magellanic Cloud L/Teff
PMMR 64 730+75
−65
[10]
Small Magellanic Cloud L/Teff
LH 43-15 Template:Solar radius calculator[105] – 740[104] Large Magellanic Cloud L/Teff
PMMR 116 717[109] Small Magellanic Cloud L/Teff
MSX SMC 055 702[110]1,557+215
−130
[106]
Small Magellanic Cloud L/Teff A super-AGB candidate.
The following well-known stars are listed for the purpose of comparison.
HV 2112 675 – 1,193[111] Small Magellanic Cloud L/Teff It has been previously considered to be a possible Thorne–Żytkow object.[111]
HV 11417 673[106]–798[105] Small Magellanic Cloud L/Teff Candidate Thorne-Zytkow object.[111]
HD 269953 647[107]–720[109] Large Magellanic Cloud L/Teff A yellow hypergiant.
HD 33579 471[109] Large Magellanic Cloud L/Teff The brightest star in the Large Magellanic Cloud.
S Doradus 100[112] Large Magellanic Cloud L/Teff A luminous blue variable in the S Doradus instability strip.
HD 37974 99[113] Large Magellanic Cloud L/Teff An unusual blue hypergiant with a large dusty disk.[113]
R136a1 42.7+1.6
−0.9
[114]
Large Magellanic Cloud L/Teff One of the most luminous and most massive stars.
BAT 99-98 37.5[115] Large Magellanic Cloud L/Teff One of the most luminous and most massive stars.
HD 5980 A 24[116] Small Magellanic Cloud L/Teff A luminous blue variable and one of the most luminous stars.

Andromeda (M31) and Triangulum (M33) galaxies

List of the largest known stars in Andromeda and Triangulum galaxies
Star name Solar radii
(Sun = 1)
Galaxy Method[lower-alpha 1] Notes
WOH G64 (For comparison) 1540[9][10][11][12][13] ± 77[9] Large Magellanic Cloud L/Teff Located in the Large Magellanic Cloud.

Possibly the largest known star.[9][10][14][11]

LGGS J013418.56+303808.6 1,363[117] Triangulum Galaxy L/Teff
LGGS J004124.80+411634.7 1,240[118] Andromeda Galaxy L/Teff
LGGS J004255.95+404857.5 785[118] Andromeda Galaxy L/Teff
LGGS J013349.86+303246.1 710[119]–795[117] Triangulum Galaxy L/Teff A yellow supergiant.
The following well-known stars are listed for the purpose of comparison.
Var 83 150[120] Triangulum Galaxy L/Teff A luminous blue variable and one of the most luminous stars in M33.

Other galaxies (within the Local Group)

List of the largest known stars in other galaxies (within the Local Group)
Star name Solar radii
(Sun = 1)
Galaxy Method[lower-alpha 1] Notes
WOH G64 (For comparison) 1540[9][10][11][12][13] ± 77[9] Large Magellanic Cloud L/Teff Located in the Large Magellanic Cloud.

Possibly the largest known star.[9][10][14][11]

Sextans A 10 995±130[121] Sextans A L/Teff
WLM 02 883+284
−167
[122]
WLM L/Teff
Sextans A 5 870±145[121] Sextans A L/Teff
Sextans A 7 710±100[121] Sextans A L/Teff

Outside the Local Group

Note that this list doesn't include the candidate JWST dark stars, with estimated radii of up to 61 Astronomy:astronomical unit|astronomical units (13,000 R)[123] or Quasi-stars, with theoretical models suggesting that they could reach radii of up to 40,700 solar radii (189 au).[124]

List of the largest known stars in galaxies outside the Local Group
Star name Solar radii
(Sun = 1)
Galaxy Group Method[lower-alpha 1] Notes
WOH G64 (For comparison) 1540[9][10][11][12][13] ± 77[9] Large Magellanic Cloud L/Teff Located in the Large Magellanic Cloud.

Possibly the largest known star.[9][10][14][11]

SPIRITS 14atl 1,134–1,477[125] Messier 83 Centaurus A/M83 Group L/Teff
SPIRITS 15ahp 1,098[125] NGC 2403 M81 Group L/Teff
Quyllur Template:Solar radius calculator[126] L/Teff Likely the first red supergiant star at cosmological distances and is also discovered by James Webb Space Telescope.
The following well-known stars are listed for the purpose of comparison.
Godzilla 430–2,365[127] Sunburst galaxy L/Teff The most luminous known star.[128]
Mothra 271[129] L/Teff A binary star at cosmological distances.
NGC 2363-V1 194356[130] NGC 2366 M81 Group L/Teff

Transient events

During some transient events, such as red novae or LBV eruptions the star's radius can increase by a significant amount.

List of largest stars during transient events
Star or transient event name Solar radii
(Sun = 1)
Year Galaxy Group Method Notes
AT 2017jfs 33,000[131] 2017 NGC 4470 L/Teff
SNhunt151 Formatting error: invalid input when rounding[132] 2014 UGC 3165 LDC 331 L/Teff
SN 2015bh Error in {{val}}: parameter 1 is not a valid number.[133] 2015 NGC 2770 LDC 616 L/Teff
AT 2018hso 10,350[134] 2018 NGC 3729 M109 Group L/Teff
M51 OT2019-1 Formatting error: invalid input when rounding[135] 2019 Whirlpool Galaxy M51 Group L/Teff
η Carinae 4,319 – 6,032[86] 1845 Milky Way Local Group L/Teff During the outburst, the star became the second brightest star in sky, reaching an apparent magnitude of between -0.8 and -1.0.[136]
AT 2010dn Formatting error: invalid input when rounding[137] 2010 NGC 3180 LDC 743 L/Teff
SN 2011fh 3,980[138] 2011 NGC 4806 Abell 3528 L/Teff
AT 2014ej Formatting error: invalid input when rounding[139] 2014 NGC 7552 Grus Quartet L/Teff
V838 Monocerotis 3,190[78] 2002 Milky Way Local Group L/Teff
SN2008S Formatting error: invalid input when rounding[137] 2008 NGC 6946 NGC 6946 Group L/Teff
SNhunt120 Formatting error: invalid input when rounding[140][139] 2012 NGC 5775 Virgo Cluster L/Teff
AT 2017be Formatting error: invalid input when rounding[141] 2017 NGC 2537 L/Teff
WOH G64 (For comparison) 1540[9][10][11][12][13] ± 77[9] Large Magellanic Cloud L/Teff Located in the Large Magellanic Cloud.

Possibly the largest known star.[9][10][14][11]

PHL 293B star 1,348 – 1,463[142] 2002 PHL 293B L/Teff
SNhunt248 ~850[143] 2014 NGC 5806 NGC 5846 Group L/Teff
R71 500[144] 2012 Large Magellanic Cloud Local Group L/Teff
SN 2000ch 500[145] 2000 NGC 3432 LDC 743 L/Teff
Godzilla 430 – 2,365[127] 2015 Sunburst galaxy ?
AT 2016blu ~330[146] 2012 – 2022 NGC 4559 Coma I Group L/Teff 19 outbursts were detected between 2012 and 2022. The star was likely relatively stable the decade before since no outbursts were detected from 1999 – 2009.[146]

SN Progenitors

List of largest supernova progenitors
Star or supernova name Solar radii
(Sun = 1)
Year Galaxy Group Method Notes
SN 2020lfn Error in {{val}}: parameter 1 is not a valid number.[147][lower-alpha 3] 2020 SDSSCGB 18735.3 SDSSCGB 18735 L/Teff
SN 2019nvm Error in {{val}}: parameter 1 is not a valid number.[147][lower-alpha 3] 2019 UGC 10858 L/Teff
SN 2019ozf Error in {{val}}: parameter 1 is not a valid number.[147][lower-alpha 3] 2019 L/Teff
SN 2020dyu Error in {{val}}: parameter 1 is not a valid number.[147][lower-alpha 3] 2020 L/Teff
SN 2020acbm Error in {{val}}: parameter 1 is not a valid number.[147][lower-alpha 3] 2020 L/Teff
SN 2021yja Error in {{val}}: parameter 1 is not a valid number.[147][lower-alpha 3] 2020 NGC 1325 Eridanus Cluster L/Teff
SN 2020ufx Error in {{val}}: parameter 1 is not a valid number.[147][lower-alpha 3] 2020 L/Teff
SN 2020qvw Error in {{val}}: parameter 1 is not a valid number.[147][lower-alpha 3] 2020 L/Teff
SN 2018dfc Error in {{val}}: parameter 1 is not a valid number.[147][lower-alpha 3] 2020 LEDA 1704264 L/Teff
SN 2021apg Error in {{val}}: parameter 1 is not a valid number.[147][lower-alpha 3] 2020 UGC 8661 L/Teff
SN 2020pni Error in {{val}}: parameter 1 is not a valid number.[147][lower-alpha 3] 2020 UGC 9684 L/Teff
SN 2020nyb Error in {{val}}: parameter 1 is not a valid number.[147][lower-alpha 3] 2020 L/Teff
SN 2020mst Error in {{val}}: parameter 1 is not a valid number.[147][lower-alpha 3] 2020 L/Teff
SN 2020xhs Error in {{val}}: parameter 1 is not a valid number.[147][lower-alpha 3] 2020 L/Teff
SN 2020wzx Error in {{val}}: parameter 1 is not a valid number.[147][lower-alpha 3] 2020 L/Teff
SN 2020abue Error in {{val}}: parameter 1 is not a valid number.[147][lower-alpha 3] 2020 L/Teff
SN 2020aavm Error in {{val}}: parameter 1 is not a valid number.[147][lower-alpha 3] 2020 L/Teff
SN 2020uim Error in {{val}}: parameter 1 is not a valid number.[147][lower-alpha 3] 2020 L/Teff
SN 2021skn Error in {{val}}: parameter 1 is not a valid number.[147][lower-alpha 3] 2021 L/Teff
SN 2018fif Error in {{val}}: parameter 1 is not a valid number.[147][lower-alpha 3] 2018 UGC 85 USGC U007 L/Teff
SN 2020xva Error in {{val}}: parameter 1 is not a valid number.[147][lower-alpha 3] 2020 L/Teff
SN 2019ust Error in {{val}}: parameter 1 is not a valid number.[147][lower-alpha 3] 2019 UGC 548 L/Teff
SN 2021libn Error in {{val}}: parameter 1 is not a valid number.[147][lower-alpha 3] 2021 L/Teff
SN 2020afdi Error in {{val}}: parameter 1 is not a valid number.[147][lower-alpha 3] 2020 L/Teff
SN 2019eoh Error in {{val}}: parameter 1 is not a valid number.[147][lower-alpha 3] 2019 L/Teff
SN 2020faa Formatting error: invalid input when rounding[148] 2020 2MASS J14470904+7244157 L/Teff
SN 2023ixf 912+227
−222
[149]1,060±30[150]
2023 Pinwheel galaxy M101 Group L/Teff
SN 2019oxn Error in {{val}}: parameter 1 is not a valid number.[147][lower-alpha 3] 2020 L/Teff
SN 2020jfo 700±10[151] 2020 Messier 61 Virgo Cluster L/Teff
SN 2020cxd Error in {{val}}: parameter 1 is not a valid number.[147][lower-alpha 3] 2020 NGC 6395 LDC 1246 L/Teff
SN 2020fqv Error in {{val}}: parameter 1 is not a valid number.[147][lower-alpha 3] 2020 NGC 4568 Virgo Cluster L/Teff
SN 2023axu 417±28[152] 2023 NGC 2283 L/Teff
SN 2021agco 78.37+25.59
−19.94
, ~7,000 (during peak brightness)[153]
2021 UGC 3855 LDC 506 L/Teff Nearest ultrastripped supernova known.

See also

Notes

  1. 1.0 1.1 1.2 1.3 1.4 Methods for calculating the radius:
    • AD: radius calculated from angular diameter and distance
    • L/Teff: radius calculated from bolometric luminosity and effective temperature
  2. 2.0 2.1 2.2 2.3 2.4 2.5 At the J2000 epoch
  3. 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 3.20 3.21 3.22 3.23 3.24 3.25 3.26 3.27 Breakout radius of star just before its supernova

References

  1. Mamajek, E. E.; Prsa, A.; Torres, G.; Harmanec, P.; Asplund, M.; Bennett, P. D.; Capitaine, N.; Christensen-Dalsgaard, J.; Depagne, E.; Folkner, W. M.; Haberreiter, M. (October 2015). "IAU 2015 Resolution B3 on Recommended Nominal Conversion Constants for Selected Solar and Planetary Properties". arXiv:1510.07674 [astro-ph.SR].
  2. Rau, A.; Kulkarni, S. R.; Ofek, E. O.; Yan, L. (2007). "Spitzer Observations of the New Luminous Red Nova M85 OT2006-1". The Astrophysical Journal 659 (2): 1536–1540. doi:10.1086/512672. Bibcode2007ApJ...659.1536R. 
  3. Haemmerlé, Lionel; Woods, T. E.; Klessen, Ralf S.; Heger, Alexander; Whalen, Daniel J. (2018). "The evolution of supermassive Population III stars". Monthly Notices of the Royal Astronomical Society 474 (2): 2757–2773. doi:10.1093/mnras/stx2919. 
  4. Herrington, Nicholas P.; Whalen, Daniel J.; Woods, Tyrone E. (2023). "Modelling supermassive primordial stars with <SCP>mesa</SCP>". Monthly Notices of the Royal Astronomical Society 521: 463–473. doi:10.1093/mnras/stad572. 
  5. Haemmerlé, L.; Klessen, R. S.; Mayer, L.; Zwick, L. (2021). "Maximum accretion rate of supermassive stars". Astronomy & Astrophysics 652: L7. doi:10.1051/0004-6361/202141376. Bibcode2021A&A...652L...7H. 
  6. Levesque, Emily M.; Massey, Philip; Olsen, K. A. G.; Plez, Bertrand; Meynet, Georges; Maeder, Andre (July 2006). "The Effective Temperatures and Physical Properties of Magellanic Cloud Red Supergiants: The Effects of Metallicity". The Astrophysical Journal 645 (2): 1102–1117. doi:10.1086/504417. ISSN 0004-637X. Bibcode2006ApJ...645.1102L. 
  7. Ren, Yi; Jiang, Bi-Wei (July 2020). "On the Granulation and Irregular Variation of Red Supergiants". The Astrophysical Journal 898 (1): 24. doi:10.3847/1538-4357/ab9c17. ISSN 0004-637X. Bibcode2020ApJ...898...24R. 
  8. 8.0 8.1 8.2 8.3 8.4 8.5 "HORIZONS Web-Interface". https://ssd.jpl.nasa.gov/horizons.cgi. 
  9. 9.00 9.01 9.02 9.03 9.04 9.05 9.06 9.07 9.08 9.09 9.10 9.11 9.12 9.13 9.14 9.15 9.16 9.17 Levesque, Emily M.; Massey, Philip; Plez, Bertrand; Olsen, Knut A. G. (2009). "The Physical Properties of the Red Supergiant WOH G64: The Largest Star Known?". The Astronomical Journal 137 (6): 4744. doi:10.1088/0004-6256/137/6/4744. Bibcode2009AJ....137.4744L. 
  10. 10.00 10.01 10.02 10.03 10.04 10.05 10.06 10.07 10.08 10.09 10.10 10.11 10.12 10.13 10.14 10.15 10.16 10.17 10.18 10.19 10.20 de Wit, S.; Bonanos, A.Z.; Tramper, F.; Yang, M.; Maravelias, G.; Boutsia, K.; Britavskiy, N.; Zapartas, E. (2023). "Properties of luminous red supergiant stars in the Magellanic Clouds". Astronomy and Astrophysics 669: 17. doi:10.1051/0004-6361/202243394. Bibcode2023A&A...669A..86D. 
  11. 11.00 11.01 11.02 11.03 11.04 11.05 11.06 11.07 11.08 11.09 11.10 11.11 Levesque, E. M. (June 2010). "The Physical Properties of Red Supergiants". Hot and Cool: Bridging Gaps in Massive Star Evolution ASP Conference Series. 425. pp. 103. Bibcode2010ASPC..425..103L. https://articles.adsabs.harvard.edu/pdf/2010ASPC..425..103L. 
  12. 12.0 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 Beasor, Emma R.; Smith, Nathan (2022-05-01). "The Extreme Scarcity of Dust-enshrouded Red Supergiants: Consequences for Producing Stripped Stars via Winds". The Astrophysical Journal 933 (1): 41. doi:10.3847/1538-4357/ac6dcf. Bibcode2022ApJ...933...41B. 
  13. 13.0 13.1 13.2 13.3 13.4 13.5 Steven R. Goldman; Jacco Th. van Loon (2016). "The wind speeds, dust content, and mass-loss rates of evolved AGB and RSG stars at varying metallicity". Monthly Notices of the Royal Astronomical Society 465 (1): 403–433. doi:10.1093/mnras/stw2708. Bibcode2017MNRAS.465..403G. 
  14. 14.0 14.1 14.2 14.3 14.4 14.5 Jones, Olivia; Woods, Paul; Kemper, Franziska; Kraemer, Elena; Sloan, G.; Srinivasan, Sivakrishnan; Oliveira, Joana; van Loon, Jacco et al. (May 7, 2017). "The SAGE-Spec Spitzer Legacy program: the life-cycle of dust and gas in the Large Magellanic Cloud. Point source classification – III". Monthly Notices of the Royal Astronomical Society 470 (3): 3250–3282. doi:10.1093/mnras/stx1101. https://www.researchgate.net/publication/316780448. Retrieved 23 June 2022. 
  15. 15.00 15.01 15.02 15.03 15.04 15.05 15.06 15.07 15.08 15.09 15.10 15.11 15.12 15.13 15.14 Levesque, Emily M.; Massey, Philip; Olsen, K. A. G.; Plez, Bertrand; Josselin, Eric; Maeder, Andre; Meynet, Georges (August 2005). "The Effective Temperature Scale of Galactic Red Supergiants: Cool, but Not As Cool As We Thought". The Astrophysical Journal 628 (2): 973–985. doi:10.1086/430901. ISSN 0004-637X. Bibcode2005ApJ...628..973L. 
  16. 16.0 16.1 16.2 16.3 16.4 Davies, B.; Figer, D. F.; Law, C. J.; Kudritzki, R. P.; Najarro, F.; Herrero, A.; MacKenty, J. W. (2008). "The Cool Supergiant Population of the Massive Young Star Cluster RSGC1". The Astrophysical Journal 676 (2): 1016–1028. doi:10.1086/527350. Bibcode2008ApJ...676.1016D. 
  17. 17.0 17.1 17.2 17.3 17.4 Decin, Leen; Richards, Anita M. S.; Marchant, Pablo; Sana, Hugues (17 March 2023). "ALMA detection of CO rotational line emission in red supergiant stars of the massive young star cluster RSGC1 -- Determination of a new mass-loss rate prescription for red supergiants". arXiv:2303.09385 [astro-ph.SR].
  18. 18.00 18.01 18.02 18.03 18.04 18.05 18.06 18.07 18.08 18.09 18.10 18.11 18.12 18.13 18.14 18.15 18.16 18.17 18.18 18.19 Humphreys, Roberta M.; Helmel, Greta; Jones, Terry J.; Gordon, Michael S. (August 2020). "Exploring the Mass Loss Histories of the Red Supergiants" (in en). The Astronomical Journal 160 (3): 145. doi:10.3847/1538-3881/abab15. Bibcode2020AJ....160..145H. 
  19. Wittkowski, M.; Hauschildt, P. H.; Arroyo-Torres, B.; Marcaide, J. M. (April 2012). "Fundamental properties and atmospheric structure of the red supergiant VY Canis Majoris based on VLTI/AMBER spectro-interferometry". Astronomy and Astrophysics 540: L12. doi:10.1051/0004-6361/201219126. ISSN 0004-6361. Bibcode2012A&A...540L..12W. 
  20. 20.0 20.1 Alcolea, J.; Bujarrabal, V.; Planesas, P.; Teyssier, D.; Cernicharo, J.; De Beck, E.; Decin, L.; Dominik, C. et al. (November 2013). "HIFISTARS Herschel/HIFI observations of VY Canis Majoris. Molecular-line inventory of the envelope around the largest known star". Astronomy & Astrophysics 559: 25. doi:10.1051/0004-6361/201321683. ISSN 0004-6361. Bibcode2013A&A...559A..93A. https://ui.adsabs.harvard.edu/link_gateway/2013A%26A...559A..93A/PUB_HTML. 
  21. Gordon, Michael S.; Jones, Terry J.; Humphreys, Roberta M.; Ertel, Steve; Hinz, Philip M.; Hoffman, William F.; Stone, Jordan; Spalding, Eckhart et al. (February 2019). "Thermal Emission in the Southwest Clump of VY CMa". The Astronomical Journal 157 (2): 57. doi:10.3847/1538-3881/aaf5cb. Bibcode2019AJ....157...57G. 
  22. Nguyen, Thinh H.; Guinan, Edward F. (2022-01-11). "Stars on the Verge: Analyses of the Complex Light Variations of the Hyper-luminous Red Supergiant VY Canis Majoris: On the Nature of the Star's "Great Dimming" Episodes". Research Notes of the AAS 6 (1): 12. doi:10.3847/2515-5172/ac4991. ISSN 2515-5172. Bibcode2022RNAAS...6...12N. 
  23. 23.00 23.01 23.02 23.03 23.04 23.05 23.06 23.07 23.08 23.09 23.10 23.11 Vallenari, A.; Brown, A. G. A.; Prusti, T. (13 June 2022). "Gaia Data Release 3. Summary of the content and survey properties" (in en). Astronomy & Astrophysics. doi:10.1051/0004-6361/202243940. ISSN 0004-6361. 
  24. 24.0 24.1 Arroyo-Torres, B.; Wittkowski, M.; Marcaide, J. M.; Hauschildt, P. H. (June 2013). "The atmospheric structure and fundamental parameters of the red supergiants AH Scorpii, UY Scuti, and KW Sagittarii". Astronomy and Astrophysics 554: A76. doi:10.1051/0004-6361/201220920. ISSN 0004-6361. Bibcode2013A&A...554A..76A. 
  25. 25.0 25.1 25.2 Montargès, M. (5 January 2023). "The VLT/SPHERE view of the ATOMIUM cool evolved star sample. I. Overview: Sample characterization through polarization analysis". Astronomy and Astrophysics 671: A96. doi:10.1051/0004-6361/202245398. Bibcode2023A&A...671A..96M. 
  26. Fok, Thomas K. T.; Nakashima, Jun-ichi; Yung, Bosco H. K.; Hsia, Chih-Hao; Deguchi, Shuji (November 2012). "Maser Observations of Westerlund 1 and Comprehensive Considerations on Maser Properties of Red Supergiants Associated with Massive Clusters" (in en). The Astrophysical Journal 760 (1): 65. doi:10.1088/0004-637X/760/1/65. ISSN 0004-637X. Bibcode2012ApJ...760...65F. https://dx.doi.org/10.1088/0004-637X/760/1/65. 
  27. 27.0 27.1 27.2 27.3 Arévalo, Aura de Las Estrellas Ramírez (July 2018). The Red Supergiants in the Supermassive Stellar Cluster Westerlund 1 (text thesis). University of São Paulo. doi:10.11606/D.14.2019.tde-12092018-161841.
  28. "APOD: 2017 June 20 - The Massive Stars in Westerlund 1". https://apod.nasa.gov/apod/ap170620.html. 
  29. Messineo, M.; Brown, A. G. A. (2019). "A Catalog of Known Galactic K-M Stars of Class I Candidate Red Supergiants in Gaia DR2". The Astronomical Journal 158 (1): 20. doi:10.3847/1538-3881/ab1cbd. Bibcode2019AJ....158...20M. 
  30. Thompson, R. R.; Creech-Eakman, M. J. (2003-12-01). "Interferometric observations of the supergiant S Persei: Evidence for axial symmetry and the warm molecular layer". American Astronomical Society Meeting Abstracts 203: 49.07. Bibcode2003AAS...203.4907T. https://ui.adsabs.harvard.edu/abs/2003AAS...203.4907T. 
  31. 31.0 31.1 31.2 31.3 Norris, Ryan Patrick (13 December 2019). Seeing stars like never before: A long-term interferometric imaging survey of red supergiants. Physics and Astronomy Dissertations (Thesis). Georgia State University. Bibcode:2019PhDT........63N. doi:10.57709/15009706 Check |doi= value (help).
  32. Gvaramadze, V. V.; Menten, K. M.; Kniazev, A. Y.; Langer, N.; Mackey, J.; Kraus, A.; Meyer, D. M. -A.; Kamiński, T. (January 2014). "IRC -10414: a bow-shock-producing red supergiant star". Monthly Notices of the Royal Astronomical Society 437 (1): 843–856. doi:10.1093/mnras/stt1943. ISSN 0035-8711. Bibcode2014MNRAS.437..843G. 
  33. 33.0 33.1 Verhoelst, T.; Van der Zypen, N.; Hony, S.; Decin, L.; Cami, J.; Eriksson, K. (April 2009). "The dust condensation sequence in red supergiant stars". Astronomy & Astrophysics 498 (1): 127–138. doi:10.1051/0004-6361/20079063. ISSN 0004-6361. 
  34. Tsuboi, Masato; Kitamura, Yoshimi; Tsutsumi, Takahiro; Miyawaki, Ryosuke; Miyoshi, Makoto; Miyazaki, Atsushi (April 2020). "Sub-millimeter detection of a Galactic center cool star IRS 7 by ALMA". Publications of the Astronomical Society of Japan 72 (2): 36. doi:10.1093/pasj/psaa013. ISSN 0004-6264. Bibcode2020PASJ...72...36T. 
  35. Rodríguez-Coira, G.; Gravity Collaboration (2021). "The Molecular Layer of GCIRS7". New Horizons in Galactic Center Astronomy and Beyond 528: 397. Bibcode2021ASPC..528..397R. 
  36. Guerço, Rafael; Smith, Verne V; Cunha, Katia; Ekström, Sylvia; Abia, Carlos; Plez, Bertrand; Meynet, Georges; Ramirez, Solange V et al. (2022-09-13). "Evidence of deep mixing in IRS 7, a cool massive supergiant member of the Galactic nuclear star cluster" (in en). Monthly Notices of the Royal Astronomical Society 516 (2): 2801–2811. doi:10.1093/mnras/stac2393. ISSN 0035-8711. https://academic.oup.com/mnras/article/516/2/2801/6675813. 
  37. Dorn-Wallenstein, Trevor Z.; Levesque, Emily M.; Neugent, Kathryn F.; Davenport, James R. A.; Morris, Brett M.; Gootkin, Keyan (2020). "Short-term Variability of Evolved Massive Stars with TESS. II. A New Class of Cool, Pulsating Supergiants". The Astrophysical Journal 902 (1): 24. doi:10.3847/1538-4357/abb318. Bibcode2020ApJ...902...24D. 
  38. Beasor, Emma R.; Davies, Ben (2017-12-05). "The evolution of Red Supergiant mass-loss rates". Monthly Notices of the Royal Astronomical Society 475 (1): 55. doi:10.1093/mnras/stx3174. Bibcode2018MNRAS.475...55B. 
  39. Xu, Shuangjing; Zhang, Bo; Reid, Mark J.; Menten, Karl M.; Zheng, Xingwu; Wang, Guangli (May 2018). "The Parallax of the Red Hypergiant VX Sgr with Accurate Tropospheric Delay Calibration". The Astrophysical Journal 859 (1): 14. doi:10.3847/1538-4357/aabba6. ISSN 0004-637X. Bibcode2018ApJ...859...14X. 
  40. Chiavassa, A.; Lacour, S.; Millour, F.; Driebe, T.; Wittkowsi, M.; Plez, B.; Thiébaut, E.; Josselin, E. et al. (February 2010). "VLTI/AMBER spectro-interferometric imaging of VX Sagittarii's inhomogenous outer atmosphere". Astronomy and Astrophysics 511: 8. doi:10.1051/0004-6361/200913288. ISSN 0004-6361. Bibcode2010A&A...511A..51C. https://ui.adsabs.harvard.edu/abs/2010A%26A...511A..51C/abstract. 
  41. 41.0 41.1 Tabernero, H. M.; Dorda, R.; Negueruela, I.; Marfil, E. (February 2021). "The nature of VX Sagitarii: Is it a TŻO, a RSG, or a high-mass AGB star?". Astronomy & Astrophysics 646: A98. doi:10.1051/0004-6361/202039236. ISSN 0004-6361. Bibcode2021A&A...646A..98T. https://www.aanda.org/10.1051/0004-6361/202039236. 
  42. 42.0 42.1 Wallstrom, S. H. J. (7 December 2023). "ATOMIUM: Molecular inventory of 17 oxygen-rich evolved stars observed with ALMA". Astronomy & Astrophysics. doi:10.1051/0004-6361/202347632. 
  43. 43.0 43.1 43.2 43.3 43.4 43.5 Wing, Robert F. (September 2009). "The Biggest Stars of All". The Biggest, Baddest, Coolest Stars ASP Conference Series. 412. pp. 113. Bibcode2009ASPC..412..113W. https://ui.adsabs.harvard.edu/abs/2009ASPC..412..113W/abstract. 
  44. 44.0 44.1 Norris, Ryan (27 February 2021). "An Interferometric Imaging Survey of Red Supergiant Stars". The 20.5Th Cambridge Workshop on Cool Stars: 263. doi:10.5281/zenodo.4567641. Bibcode2021csss.confE.263N. https://zenodo.org/record/4567641. 
  45. Massalkhi, S.; Agúndez, M.; Cernicharo, J. (August 2019). "Study of CS, SiO, and SiS abundances in carbon star envelopes: assessing their role as gas-phase precursors of dust". Astronomy & Astrophysics 628: A62. doi:10.1051/0004-6361/201935069. ISSN 0004-6361. PMID 31511746. Bibcode2019A&A...628A..62M. 
  46. 46.0 46.1 46.2 Stassun K.G. (October 2019). "The revised TESS Input Catalog and Candidate Target List". The Astronomical Journal 158 (4): 138. doi:10.3847/1538-3881/ab3467. Bibcode2019AJ....158..138S. 
  47. van Genderen, A. M.; Lobel, A.; Nieuwenhuijzen, H.; Henry, G. W.; De Jager, C.; Blown, E.; Di Scala, G.; Van Ballegoij, E. J. (2019). "Pulsations, eruptions, and evolution of four yellow hypergiants". Astronomy and Astrophysics 631: A48. doi:10.1051/0004-6361/201834358. Bibcode2019A&A...631A..48V. 
  48. Bauer, Wendy Hagen; Gull, Theodore R.; Bennett, Philip D. (2008-09-01). "Spatial Extension In The Ultraviolet Spectrum Of VV Cephei". The Astronomical Journal 136 (3): 1312–1324. doi:10.1088/0004-6256/136/3/1312. ISSN 0004-6256. Bibcode2008AJ....136.1312H. 
  49. 49.0 49.1 Comerón, F.; Djupvik, A. A.; Schneider, N.; Pasquali, A. (27 September 2020). "The historical record of massive star formation in Cygnus". Astronomy & Astrophysics 2009: A62. doi:10.1051/0004-6361/202039188. Bibcode2020A&A...644A..62C. 
  50. Turner, David G.; Rohanizadegan, Mina; Berdnikov, Leonid N.; Pastukhova, Elena N. (November 2006). "The Long-Term Behavior of the Semiregular M Supergiant Variable BC Cygni". Publications of the Astronomical Society of the Pacific 118 (849): 1533–1544. doi:10.1086/508905. ISSN 0004-6280. Bibcode2006PASP..118.1533T. 
  51. González-Torà, G.; Wittkowsi, M.; Davies, B.; Plez, B.; Kravchenko, K. (January 2023). "The effect of winds on atmospheric layers of red supergiants. I. Modelling for interferometric observations". Astronomy & Astrophysics 669: 11. doi:10.1051/0004-6361/202244503. ISSN 0004-6361. Bibcode2023A&A...669A..76G. https://ui.adsabs.harvard.edu/link_gateway/2023A%26A...669A..76G/PUB_HTML. 
  52. Arroyo-Torres, B.; Wittkowski, M.; Chiavassa, A.; Scholz, M.; Freytag, B.; Marcaide, J. M.; Hauschildt, P. H.; Wood, P. R. et al. (March 2015). "What causes the large extensions of red supergiant atmospheres?. Comparisons of interferometric observations with 1D hydrostatic, 3D convection, and 1D pulsating model atmospheres". Astronomy and Astrophysics 575: A50. doi:10.1051/0004-6361/201425212. ISSN 0004-6361. Bibcode2015A&A...575A..50A. 
  53. 53.0 53.1 De, Kishalay; Mereminskiy, Ilya; Soria, Roberto; Conroy, Charlie; Kara, Erin; Anand, Shreya; Ashley, Michael C. B.; Boyer, Martha L. et al. (2022-08-01). "SRGA J181414.6-225604: A New Galactic Symbiotic X-Ray Binary Outburst Triggered by an Intense Mass-loss Episode of a Heavily Obscured Mira Variable". The Astrophysical Journal 935 (1): 36. doi:10.3847/1538-4357/ac7c6e. ISSN 0004-637X. Bibcode2022ApJ...935...36D. 
  54. 54.0 54.1 Messineo, Maria (18 January 2023). "Identification of late-type Class I stars using Gaia DR3 Apsis parameters". Astronomy & Astrophysics 671: A148. doi:10.1051/0004-6361/202245587. Bibcode2023A&A...671A.148M. 
  55. Montargès, M.; Homan, W.; Keller, D.; Clementel, N.; Shetye, S.; Decin, L.; Harper, G. M.; Royer, P. et al. (May 2019). "NOEMA maps the CO J = 2 - 1 environment of the red supergiant μ Cep". Monthly Notices of the Royal Astronomical Society 485 (2): 2417–2430. doi:10.1093/mnras/stz397. ISSN 0035-8711. Bibcode2019MNRAS.485.2417M. 
  56. 56.0 56.1 López Ariste, A.; Wavasseur, M.; Mathias, Ph.; Lèbre, A.; Tessore, B.; Georgiev, S. (February 2023). "The height of convective plumes in the red supergiant μ Cep". Astronomy & Astrophysics 670: 11. doi:10.1051/0004-6361/202244285. ISSN 0004-6361. Bibcode2023A&A...670A..62L. https://ui.adsabs.harvard.edu/link_gateway/2023A%26A...670A..62L/PUB_HTML. 
  57. Josselin, E.; Plez, B. (July 2007). "Atmospheric dynamics and the mass loss process in red supergiant stars". Astronomy & Astrophysics 469 (2): 671–680. doi:10.1051/0004-6361:20066353. ISSN 0004-6361. 
  58. Anugu, Narsireddy; Baron, Fabien; Gies, Douglas R.; Lanthermann, Cyprien; Schaefer, Gail H.; Shepard, Katherine A.; Brummelaar, Theo ten; Monnier, John D. et al. (August 2023). "The Great Dimming of the Hypergiant Star RW Cephei: CHARA Array Images and Spectral Analysis". The Astronomical Journal 166 (2): 78. doi:10.3847/1538-3881/ace59d. ISSN 0004-6256. Bibcode2023AJ....166...78A. 
  59. Jones, Terry Jay; Shenoy, Dinesh; Humphreys, Roberta (May 2023). "The Recent Mass Loss History of the Hypergiant RW Cep". Research Notes of the American Astronomical Society 7 (5): 92. doi:10.3847/2515-5172/acd37f. ISSN 2515-5172. Bibcode2023RNAAS...7...92J. 
  60. 60.0 60.1 60.2 60.3 De Beck, E.; Decin, L.; De Koter, A.; Justtanont, K.; Verhoelst, T.; Kemper, F.; Menten, K. M. (2010). "Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles. II. CO line survey of evolved stars: Derivation of mass-loss rate formulae". Astronomy and Astrophysics 523: A18. doi:10.1051/0004-6361/200913771. Bibcode2010A&A...523A..18D. 
  61. Josselin, E.; Plez, B. (July 2007). "Atmospheric dynamics and the mass loss process in red supergiant stars". Astronomy and Astrophysics 469 (2): 671–680. doi:10.1051/0004-6361:20066353. ISSN 0004-6361. Bibcode2007A&A...469..671J. 
  62. Norris, Ryan P.; Baron, Fabien R.; Monnier, John D.; Paladini, Claudia; Anderson, Matthew D.; Martinez, Arturo O.; Schaefer, Gail H.; Che, Xiao et al. (2021). "Long Term Evolution of Surface Features on the Red Supergiant AZ Cyg". The Astrophysical Journal 919 (2): 124. doi:10.3847/1538-4357/ac0c7e. Bibcode2021ApJ...919..124N. 
  63. van Belle, G. T.; Creech-Eakman, M. J.; Hart, A. (April 2009). "Supergiant temperatures and linear radii from near-infrared interferometry". Monthly Notices of the Royal Astronomical Society 394 (4): 1925–1935. doi:10.1111/j.1365-2966.2008.14146.x. ISSN 0035-8711. Bibcode2009MNRAS.394.1925V. 
  64. 64.0 64.1 64.2 Van Belle, G. T.; Thompson, R. R.; Creech-Eakman, M. J. (2002). "Angular Size Measurements of Mira Variable Stars at 2.2 Microns. II". The Astronomical Journal 124 (3): 1706–1715. doi:10.1086/342282. Bibcode2002AJ....124.1706V. 
  65. Baron, F.; Monnier, J. D.; Kiss, L. L.; Neilson, H. R.; Zhao, M.; Anderson, M.; Aarnio, A.; Pedretti, E. et al. (April 2014). "CHARA/MIRC Observations of Two M Supergiants in Perseus OB1: Temperature, Bayesian Modeling, and Compressed Sensing Imaging". The Astrophysical Journal 785 (1): 46. doi:10.1088/0004-637X/785/1/46. ISSN 0004-637X. Bibcode2014ApJ...785...46B. 
  66. Joyce, Meridith; Leung, Shing-Chi; Molnár, László; Ireland, Michael; Kobayashi, Chiaki; Nomoto, Ken'ichi (October 2020). "Standing on the Shoulders of Giants: New Mass and Distance Estimates for Betelgeuse through Combined Evolutionary, Asteroseismic, and Hydrodynamic Simulations with MESA". The Astrophysical Journal 902 (1): 63. doi:10.3847/1538-4357/abb8db. ISSN 0004-637X. Bibcode2020ApJ...902...63J. 
  67. 67.0 67.1 67.2 67.3 67.4 67.5 67.6 Saio, Hideyuki; Nandal, Devesh; Meynet, Georges; Ekström, Sylvia (29 September 2023). "The evolutionary stage of Betelgeuse inferred from its pulsation periods". Monthly Notices of the Royal Astronomical Society 526 (2): 2765–2775. doi:10.1093/mnras/stad2949. ISSN 0035-8711. Bibcode2023MNRAS.526.2765S. https://academic.oup.com/mnras/article-abstract/526/2/2765/7286655?redirectedFrom=fulltext. 
  68. Kravchenko, K.; Jorissen, A.; Van Eck, S.; Merle, T.; Chiavassa, A.; Paladini, C.; Freytag, B.; Plez, B. et al. (2021-04-01). "Atmosphere of Betelgeuse before and during the Great Dimming event revealed by tomography". Astronomy & Astrophysics 2104: arXiv:2104.08105. doi:10.1051/0004-6361/202039801. Bibcode2021A&A...650L..17K. 
  69. Cannon, E. (30 June 2023). "The dusty circumstellar environment of Betelgeuse during the Great Dimming as seen by VLTI/MATISSE". Astronomy & Astrophysics 675: 13. doi:10.1051/0004-6361/202243611. ISSN 0004-6361. Bibcode2023A&A...675A..46C. https://www.aanda.org/articles/aa/full_html/2023/07/aa43611-22/aa43611-22.html. 
  70. 70.0 70.1 70.2 70.3 70.4 Hoffleit, D.; Warren, W. H. Jr. (November 1995). "VizieR Online Data Catalog: Bright Star Catalogue, 5th Revised Ed. (Hoffleit+, 1991)". VizieR Online Data Catalog: V/50. Bibcode1995yCat.5050....0H. 
  71. Mittag, M.; Schröder, K. -P.; Perdelwitz, V.; Jack, D.; Schmitt, J. H. M. M. (January 2023). "Chromospheric activity and photospheric variation of α Ori during the great dimming event in 2020". Astronomy & Astrophysics 669: 18. doi:10.1051/0004-6361/202244924. ISSN 0004-6361. Bibcode2023A&A...669A...9M. https://ui.adsabs.harvard.edu/abs/2023A%26A...669A...9M/abstract. 
  72. Kervella, Pierre; Arenou, Frédéric; Thévenin, Frédéric (January 2022). "Stellar and substellar companions from Gaia EDR3 -- Proper motion anomaly and resolved common proper motion pairs". Astronomy & Astrophysics 657: A7. doi:10.1051/0004-6361/202142146. ISSN 0004-6361. 
  73. Blum, R. D.; Ramírez, Solange V.; Sellgren, K.; Olsen, K. (3 July 2003). "Really Cool Stars and the Star Formation History at the Galactic Center". The Astrophysical Journal 597 (1): 323–346. doi:10.1086/378380. ISSN 0004-637X. Bibcode2003ApJ...597..323B. https://iopscience.iop.org/article/10.1086/378380. 
  74. Ohnaka, K.; Hofmann, K. -H.; Schertl, D.; Weigelt, G.; Baffa, C.; Chelli, A.; Petrov, R.; Robbe-Dubois, S. (July 2013). "High spectral resolution imaging of the dynamical atmosphere of the red supergiant Antares in the CO first overtone lines with VLTI/AMBER". Astronomy and Astrophysics 555: A24. doi:10.1051/0004-6361/201321063. ISSN 0004-6361. Bibcode2013A&A...555A..24O. 
  75. Montargès, M.; Norris, R.; Chiavassa, A.; Tessore, B.; Lèbre, A.; Baron, F. (June 2018). "The convective photosphere of the red supergiant CE Tau. I. VLTI/PIONIER H-band interferometric imaging". Astronomy & Astrophysics 614: A12. doi:10.1051/0004-6361/201731471. ISSN 0004-6361. 
  76. Schmidt, M. R.; He, J. H.; Szczerba, R.; Bujarrabal, V.; Alcolea, J.; Cernicharo, J.; Decin, L.; Justtanont, K. et al. (August 2016). "Herschel /HIFI observations of the circumstellar ammonia lines in IRC+10216". Astronomy & Astrophysics 592: A131. doi:10.1051/0004-6361/201527290. ISSN 0004-6361. PMID 28065983. Bibcode2016A&A...592A.131S. 
  77. Kamiński, Tomek; Tylenda, Romuald; Kiljan, Aleksandra; Schmidt, Mirek; Lisiecki, Krzysztof; Melis, Carl; Frankowski, Adam; Joshi, Vishal et al. (2021-11-01). "V838 Monocerotis as seen by ALMA: A remnant of a binary merger in a triple system" (in en). Astronomy & Astrophysics 655: A32. doi:10.1051/0004-6361/202141526. ISSN 0004-6361. Bibcode2021A&A...655A..32K. https://www.aanda.org/articles/aa/abs/2021/11/aa41526-21/aa41526-21.html. 
  78. 78.0 78.1 Tylenda, R. (2005-06-01). "Evolution of V838 Monocerotis during and after the 2002 eruption" (in en). Astronomy & Astrophysics 436 (3): 1009–1020. doi:10.1051/0004-6361:20052800. ISSN 0004-6361. Bibcode2005A&A...436.1009T. https://www.aanda.org/articles/aa/abs/2005/24/aa2800-05/aa2800-05.html. 
  79. Quirrenbach, A.; Mozurkewich, D.; Hummel, C. A.; Buscher, D. F.; Armstrong, J. T. (1994-05-01). "Angular diameters of the carbon stars UU Aurigae, Y Canum Venaticorum, and TX PISCIUM from optical long-baseline interferometry". Astronomy and Astrophysics 285: 541–546. ISSN 0004-6361. Bibcode1994A&A...285..541Q. https://ui.adsabs.harvard.edu/abs/1994A&A...285..541Q. 
  80. Woodruff, H. C.; Eberhardt, M.; Driebe, T.; Hofmann, K.-H.; Ohnaka, K.; Richichi, A.; Schertl, D.; Schöller, M. et al. (July 2004). "Interferometric observations of the Mira star o Ceti with the VLTI/VINCI instrument in the near-infrared". Astronomy & Astrophysics 421 (2): 703–714. doi:10.1051/0004-6361:20035826. ISSN 0004-6361. Bibcode2004A&A...421..703W. http://www.aanda.org/10.1051/0004-6361:20035826. 
  81. Najarro, Francisco; Figer, Don F.; Hillier, D. John; Geballe, T. R.; Kudritzki, Rolf P. (February 2009). "Metallicity in the Galactic Center: The Quintuplet Cluster". The Astrophysical Journal 691 (2): 1816–1827. doi:10.1088/0004-637X/691/2/1816. ISSN 0004-637X. Bibcode2009ApJ...691.1816N. 
  82. Ohnaka, Keiichi; Weigelt, Gerd; Hofmann, Karl-Heinz (2019-09-24). "Infrared interferometric three-dimensional diagnosis of the atmospheric dynamics of the AGB star R Dor with VLTI/AMBER". The Astrophysical Journal 883 (1): 89. doi:10.3847/1538-4357/ab3d2a. ISSN 1538-4357. Bibcode2019ApJ...883...89O. 
  83. Moravveji, Ehsan; Guinan, Edward F.; Khosroshahi, Habib; Wasatonic, Rick (December 2013). "The Age and Mass of the α Herculis Triple-star System from a MESA Grid of Rotating Stars with 1.3". The Astronomical Journal 146 (6): 148. doi:10.1088/0004-6256/146/6/148. ISSN 0004-6256. Bibcode2013AJ....146..148M. 
  84. Clark, J. S.; Najarro, F.; Negueruela, I.; Ritchie, B. W.; Urbaneja, M. A.; Howarth, I. D. (May 2012). "On the nature of the galactic early-B hypergiants". Astronomy & Astrophysics 541: A145. doi:10.1051/0004-6361/201117472. ISSN 0004-6361. Bibcode2012A&A...541A.145C. 
  85. Gull, Theodore R.; Damineli, Augusto (November 2009). "JD13 – Eta Carinae in the Context of the Most Massive Stars" (in en). Proceedings of the International Astronomical Union 5 (H15): 373–398. doi:10.1017/S1743921310009890. ISSN 1743-9221. 
  86. 86.0 86.1 Davidson, Kris (2020-02-05). "Radiation-Driven Stellar Eruptions" (in en). Galaxies 8 (1): 10. doi:10.3390/galaxies8010010. ISSN 2075-4434. Bibcode2020Galax...8...10D. 
  87. Davis, J.; Booth, A. J.; Ireland, M. J.; Jacob, A. P.; North, J. R.; Owens, S. M.; Robertson, J. G.; Tango, W. J. et al. (October 2007). "The Emergent Flux and Effective Temperature of δ Canis Majoris". Publications of the Astronomical Society of Australia 24 (3): 151–158. doi:10.1071/AS07017. ISSN 1323-3580. Bibcode2007PASA...24..151D. 
  88. Stock, S.; Reffert, S.; Quirrenbach, A. (May 2018). "VizieR Online Data Catalog: Stellar parameters of 372 giant stars (Stock+, 2018)". VizieR On-line Data Catalog 361 (33): 600. doi:10.26093/cds/vizier.36160033. Bibcode2018yCat..36160033S. 
  89. Carpenter, Kenneth G.; Robinson, Richard D.; Harper, Graham M.; Bennett, Philip D.; Brown, Alexander; Mullan, Dermott J. (1999). "GHRS Observations of Cool, Low-Gravity Stars. V. The Outer Atmosphere and Wind of the Nearby K Supergiant λ Velorum". The Astrophysical Journal 521 (1): 382–406. doi:10.1086/307520. Bibcode1999ApJ...521..382C. 
  90. Schiller, F.; Przybilla, N. (March 2008). "Quantitative spectroscopy of Deneb". Astronomy and Astrophysics 479 (3): 849–858. doi:10.1051/0004-6361:20078590. ISSN 0004-6361. Bibcode2008A&A...479..849S. 
  91. Rau, Gioia; Nielsen, Krister E.; Carpenter, Kenneth G.; Airapetian, Vladimir (2018-12-05). "HST/GHRS Observations of Cool, Low-gravity Stars. VI. Mass-loss Rates and Wind Parameters for M Giants". The Astrophysical Journal 869 (1): 1. doi:10.3847/1538-4357/aaf0a0. ISSN 1538-4357. Bibcode2018ApJ...869....1R. 
  92. Moravveji, Ehsan; Guinan, Edward F.; Shultz, Matt; Williamson, Michael H.; Moya, Andres (2012-03-10). "Asteroseismology of the Nearby SN-II Progenitor: Rigel Part I. The MOST High Precision Photometry and Radial Velocity Monitoring". The Astrophysical Journal 747 (2): 108. doi:10.1088/0004-637X/747/2/108. ISSN 0004-637X. 
  93. Souza, A. Domiciano de; Zorec, J.; Millour, F.; Bouquin, J.-B. Le; Spang, A.; Vakili, F. (2021-10-01). "Refined fundamental parameters of Canopus from combined near-IR interferometry and spectral energy distribution" (in en). Astronomy & Astrophysics 654: A19. doi:10.1051/0004-6361/202140478. ISSN 0004-6361. Bibcode2021A&A...654A..19D. https://www.aanda.org/articles/aa/abs/2021/10/aa40478-21/aa40478-21.html. 
  94. Hatzes, A. P.; Cochran, W. D.; Endl, M.; Guenther, E. W.; MacQueen, P.; Hartmann, M.; Zechmeister, M.; Han, I. et al. (2015-08-01). "Long-lived, long-period radial velocity variations in Aldebaran: A planetary companion and stellar activity" (in en). Astronomy & Astrophysics 580: A31. doi:10.1051/0004-6361/201425519. ISSN 0004-6361. Bibcode2015A&A...580A..31H. https://www.aanda.org/articles/aa/abs/2015/08/aa25519-14/aa25519-14.html. 
  95. Ramirez, I.; Prieto, C. Allende (2011-12-20). "Fundamental Parameters and Chemical Composition of Arcturus". The Astrophysical Journal 743 (2): 135. doi:10.1088/0004-637X/743/2/135. ISSN 0004-637X. Bibcode2011ApJ...743..135R. 
  96. 96.0 96.1 Baines, Ellyn K.; Armstrong, J. Thomas; Schmitt, Henrique R.; Zavala, R. T.; Benson, James A.; Hutter, Donald J.; Tycner, Christopher; van Belle, Gerard T. (2017-12-20). "Fundamental Parameters of 87 Stars from the Navy Precision Optical Interferometer". The Astronomical Journal 155 (1): 30. doi:10.3847/1538-3881/aa9d8b. ISSN 1538-3881. Bibcode2018AJ....155...30B. 
  97. Monnier, J. D.; Che, Xiao; Zhao, Ming; Ekström, S.; Maestro, V.; Aufdenberg, Jason; Baron, F.; Georgy, C. et al. (December 2012). "Resolving Vega and the Inclination Controversy with CHARA/MIRC". The Astrophysical Journal 761 (1): L3. doi:10.1088/2041-8205/761/1/L3. ISSN 0004-637X. Bibcode2012ApJ...761L...3M. 
  98. Liebert, James; Young, Patrick A.; Arnett, David; Holberg, J. B.; Williams, Kurtis A. (2005-09-01). "The Age and Progenitor Mass of Sirius B". The Astrophysical Journal 630 (1): L69–L72. doi:10.1086/462419. ISSN 0004-637X. Bibcode2005ApJ...630L..69L. 
  99. Akeson, Rachel; Beichman, Charles; Kervella, Pierre; Fomalont, Edward; Benedict, G. Fritz (2021-06-14). "Precision Millimeter Astrometry of the α Centauri AB System". The Astronomical Journal 162 (1): 14. doi:10.3847/1538-3881/abfaff. ISSN 0004-6256. Bibcode2021AJ....162...14A. 
  100. Ohnaka, K.; Driebe, T.; Hofmann, K. -H.; Weigelt, T.; Wittkowski, M. (16 April 2008). "Spatially resolved dusty torus toward the red supergiant WOH G64 in the Large Magellanic Cloud". Astronomy and Astrophysics 484 (2): 371–379. doi:10.1051/0004-6361:200809469. ISSN 0004-6361. Bibcode2008A&A...484..371O. https://www.aanda.org/component/article?access=bibcode&bibcode=&bibcode=2008A%2526A...484..371OFUL. 
  101. Ohnaka, Keiichi; Driebe, Thomas; Hofmann, Karl-Heinz; Weigelt, Gerd; Wittkowski, Markus (March 2009). "Resolving the dusty torus and the mystery surrounding LMC red supergiant WOH G64". The Magellanic System: Stars, Gas, and Galaxies, Proceedings of the International Astronomical Union, IAU Symposium 256: 454–458. doi:10.1017/S1743921308028858. ISSN 1743-9213. Bibcode2009IAUS..256..454O. https://articles.adsabs.harvard.edu/pdf/2009IAUS..256..454O. 
  102. 102.0 102.1 102.2 102.3 102.4 Goldman, Steven R.; van Loon, Jacco Th.; Zijlstra, Albert A.; Green, James A.; Wood, Peter R.; Nanni, Ambra; Imai, Hiroshi; Whitelock, Patricia A. et al. (2017-02-11). "The wind speeds, dust content, and mass-loss rates of evolved AGB and RSG stars at varying metallicity" (in en). Monthly Notices of the Royal Astronomical Society 465 (1): 403–433. doi:10.1093/mnras/stw2708. ISSN 0035-8711. Bibcode2017MNRAS.465..403G. https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/stw2708. 
  103. 103.0 103.1 103.2 University, Keele (December 2017). Research, Keele University (doctoral thesis). Keele University.
  104. 104.00 104.01 104.02 104.03 104.04 104.05 104.06 104.07 104.08 104.09 104.10 104.11 104.12 104.13 Neugent, Kathryn F.; Levesque, Emily M.; Massey, Philip; Morrell, Nidia I.; Drout, Maria R. (2020-09-08). "The Red Supergiant Binary Fraction of the Large Magellanic Cloud". The Astrophysical Journal 900 (2): 118. doi:10.3847/1538-4357/ababaa. ISSN 1538-4357. Bibcode2020ApJ...900..118N. 
  105. 105.00 105.01 105.02 105.03 105.04 105.05 105.06 105.07 105.08 105.09 105.10 105.11 105.12 Massey, Philip; Neugent, Kathryn F.; Ekstrom, Sylvia; Georgy, Cyril; Georges, Meynet (2023). "The Time-Averaged Mass-Loss Rates of Red Supergiants As Revealed by their Luminosity Functions in M31 and M33". The Astrophysical Journal 942 (2): 35. doi:10.3847/1538-4357/aca665. Bibcode2023ApJ...942...69M. 
  106. 106.0 106.1 106.2 106.3 106.4 106.5 106.6 Groenewegen, M. A. T.; Sloan, G. C. (January 2018). "Luminosities and mass-loss rates of Local Group AGB stars and red supergiants". Astronomy & Astrophysics 609: A114. doi:10.1051/0004-6361/201731089. ISSN 0004-6361. Bibcode2018A&A...609A.114G. https://www.aanda.org/10.1051/0004-6361/201731089. 
  107. 107.0 107.1 107.2 107.3 Martin, John C.; Humphreys, Roberta M. (2023-10-30). "A Census of the Most Luminous Stars. I. The Upper HR Diagram for the Large Magellanic Cloud". The Astronomical Journal 166 (5): 214. doi:10.3847/1538-3881/ad011e. ISSN 0004-6256. 
  108. 108.0 108.1 108.2 108.3 Britavskyi, N.; Lennon, D. J.; Patrick, L. R.; Evans, C. J.; Herrero, A.; Langer, N.; van Loon, J. Th.; Clark, J. S. et al. (26 February 2019). "The VLT-FLAMES Tarantula Survey. XXX. Red stragglers in the clusters Hodge 301 and SL 639". Astronomy & Astrophysics 624: 13. doi:10.1051/0004-6361/201834564. Bibcode2019A&A...624A.128B. https://www.aanda.org/articles/aa/full_html/2019/04/aa34564-18/aa34564-18.html. 
  109. 109.0 109.1 109.2 109.3 109.4 Dorn-Wallenstein, Trevor Z.; Levesque, Emily M.; Davenport, James R. A.; Neugent, Kathryn F.; Morris, Brett M.; Bostroem, K. Azalee (2022-11-01). "The Properties of Fast Yellow Pulsating Supergiants: FYPS Point the Way to Missing Red Supergiants". The Astrophysical Journal 940 (1): 27. doi:10.3847/1538-4357/ac79b2. ISSN 0004-637X. Bibcode2022ApJ...940...27D. 
  110. García-Hernández, D. A.; Manchando, A.; Lambert, D. L.; Plez, B.; García-Lario, P.; D'Antona, F.; Lugaro, M.; Karakas, A. I. et al. (8 October 2009). "Rb-Rich Asymptotic Giant Branch Stars in the Magellanic Clouds". The Astrophysical Journal Letters 705 (1): L31–L35. doi:10.1088/0004-637X/705/1/L31. ISSN 0004-637X. Bibcode2009ApJ...705L..31G. https://iopscience.iop.org/article/10.1088/0004-637X/705/1/L31. 
  111. 111.0 111.1 111.2 Beasor, Emma R; Davies, Ben; Cabrera-Ziri, Ivan; Hurst, Georgia (2018-09-21). "A critical re-evaluation of the Thorne–Żytkow object candidate HV 2112" (in en). Monthly Notices of the Royal Astronomical Society 479 (3): 3101–3105. doi:10.1093/mnras/sty1744. ISSN 0035-8711. https://academic.oup.com/mnras/article/479/3/3101/5047896. 
  112. Lamers, H. J. G. L. M. (1995-01-01). "Observations and Interpretation of Luminous Blue Variables". IAU Colloq. 155: Astrophysical Applications of Stellar Pulsation 83: 176. Bibcode1995ASPC...83..176L. https://ui.adsabs.harvard.edu/abs/1995ASPC...83..176L. 
  113. 113.0 113.1 Kastner, Joel H.; Buchanan, Catherine L.; Sargent, B.; Forrest, W. J. (2006-02-10). "Spitzer Spectroscopy of Dusty Disks around B[e] Hypergiants in the Large Magellanic Cloud" (in en). The Astrophysical Journal 638 (1): L29–L32. doi:10.1086/500804. ISSN 0004-637X. Bibcode2006ApJ...638L..29K. 
  114. Brands, Sarah A.; Koter, Alex de; Bestenlehner, Joachim M.; Crowther, Paul A.; Sundqvist, Jon O.; Puls, Joachim; Caballero-Nieves, Saida M.; Abdul-Masih, Michael et al. (2022-07-01). "The R136 star cluster dissected with Hubble Space Telescope/STIS - III. The most massive stars and their clumped winds" (in en). Astronomy & Astrophysics 663: A36. doi:10.1051/0004-6361/202142742. ISSN 0004-6361. Bibcode2022A&A...663A..36B. https://www.aanda.org/articles/aa/abs/2022/07/aa42742-21/aa42742-21.html. 
  115. Hainich, R.; Rühling, U.; Todt, H.; Oskinova, L. M.; Liermann, A.; Gräfener, G.; Foellmi, C.; Schnurr, O. et al. (May 2014). "The Wolf-Rayet stars in the Large Magellanic Cloud: A comprehensive analysis of the WN class⋆⋆⋆". Astronomy & Astrophysics 565: A27. doi:10.1051/0004-6361/201322696. ISSN 0004-6361. 
  116. Shenar, T.; Hainich, R.; Todt, H.; Sander, A.; Hamann, W.-R.; Moffat, A. F. J.; Eldridge, J. J.; Pablo, H. et al. (July 2017). "Wolf-Rayet stars in the Small Magellanic Cloud: II. Analysis of the binaries". Astronomy & Astrophysics 591: A22. doi:10.1051/0004-6361/201527916. ISSN 0004-6361. 
  117. 117.0 117.1 Drout, Maria R.; Massey, Philip; Meynet, Georges (April 2012). "THE YELLOW AND RED SUPERGIANTS OF M33*" (in en). The Astrophysical Journal 750 (2): 97. doi:10.1088/0004-637X/750/2/97. ISSN 0004-637X. 
  118. 118.0 118.1 Massey, Philip; Silva, David R.; Levesque, Emily M.; Plez, Bertrand; Olsen, Knut A. G.; Clayton, Geoffrey C.; Meynet, Georges; Maeder, Andre (September 2009). "Red Supergiants in the Andromeda Galaxy (M31)". The Astrophysical Journal 703 (1): 420–440. doi:10.1088/0004-637X/703/1/420. Bibcode2009ApJ...703..420M. https://ui.adsabs.harvard.edu/abs/2009ApJ...703..420M. Retrieved 30 September 2023. 
  119. Kourniotis, M.; Bonanos, A. Z.; Yuan, W.; Macri, L. M.; Garcia-Alvarez, D.; Lee, C.-H. (2017-05-01). "Monitoring luminous yellow massive stars in M 33: new yellow hypergiant candidates" (in en). Astronomy & Astrophysics 601: A76. doi:10.1051/0004-6361/201629146. ISSN 0004-6361. https://www.aanda.org/articles/aa/abs/2017/05/aa29146-16/aa29146-16.html. 
  120. Valeev, A. F.; Sholukhova, O.; Fabrika, S. (2009-06-11). "A new luminous variable in M33" (in en). Monthly Notices of the Royal Astronomical Society: Letters 396 (1): L21–L25. doi:10.1111/j.1745-3933.2009.00654.x. Bibcode2009MNRAS.396L..21V. https://academic.oup.com/mnrasl/article-lookup/doi/10.1111/j.1745-3933.2009.00654.x. 
  121. 121.0 121.1 121.2 Britavskiy, N. E.; Bonanos, A. Z.; Herrero, A.; Cerviño, M.; García-Álvarez, D.; Boyer, M. L.; Masseron, T.; Mehner, A. et al. (November 2019). "Physical parameters of red supergiants in dwarf irregular galaxies in the Local Group". Astronomy and Astrophysics 631: A95. doi:10.1051/0004-6361/201935212. ISSN 0004-6361. Bibcode2019A&A...631A..95B. 
  122. González-Torà, Gemma; Davies, Ben; Kudritzki, Rolf-Peter; Plez, Bertrand (2021-06-23). "The temperatures of red supergiants in low-metallicity environments" (in en). Monthly Notices of the Royal Astronomical Society 505 (3): 4422–4443. doi:10.1093/mnras/stab1611. ISSN 0035-8711. https://academic.oup.com/mnras/article/505/3/4422/6294474. 
  123. Ilie, Cosmin; Paulin, Jillian; Freese, Katherine (2023-07-25). "Supermassive Dark Star candidates seen by JWST" (in en). Proceedings of the National Academy of Sciences 120 (30): e2305762120. doi:10.1073/pnas.2305762120. ISSN 0027-8424. PMID 37433001. Bibcode2023PNAS..12005762I. 
  124. Ball, Warrick H.; Tout, Christopher A.; Żytkow, Anna N.; Eldridge, John J. (2011-07-01). "The structure and evolution of quasi-stars: The structure and evolution of quasi-stars" (in en). Monthly Notices of the Royal Astronomical Society 414 (3): 2751–2762. doi:10.1111/j.1365-2966.2011.18591.x. 
  125. 125.0 125.1 Bond, Howard E.; Jencson, Jacob E.; Whitelock, Patricia A.; Adams, Scott M.; Bally, John; Cody, Ann Marie; Gehrz, Robert D.; Kasliwal, Mansi M. et al. (April 2022). "Hubble Space Telescope Imaging of Luminous Extragalactic Infrared Transients and Variables from the Spitzer Infrared Intensive Transients Survey*" (in en). The Astrophysical Journal 928 (2): 158. doi:10.3847/1538-4357/ac5832. ISSN 0004-637X. 
  126. Diego, J. M. et al. (2023). "JWST's PEARLS: A new lens model for ACT-CL J0102−4915, "El Gordo," and the first red supergiant star at cosmological distances discovered by JWST". Astronomy & Astrophysics 672: A3. doi:10.1051/0004-6361/202245238. Bibcode2023A&A...672A...3D. 
  127. 127.0 127.1 Diego, J. M.; Pascale, M.; Kavanagh, B. J.; Kelly, P.; Dai, L.; Frye, B.; Broadhurst, T. (September 2022). "Godzilla, a monster lurks in the Sunburst galaxy". Astronomy & Astrophysics 665: A134. doi:10.1051/0004-6361/202243605. ISSN 0004-6361. Bibcode2022A&A...665A.134D. https://www.aanda.org/10.1051/0004-6361/202243605. 
  128. "Scientists face down 'Godzilla', the most luminous star known" (in en). Nature 610 (7930): 10. 2022-10-06. doi:10.1038/d41586-022-03054-3. ISSN 0028-0836. Bibcode2022Natur.610T..10.. 
  129. Diego, J. M.; Sun, Bangzheng; Yan, Haojing; Furtak, Lukas J.; Zackrisson, Erik; Dai, Liang; Kelly, Patrick; Nonino, Mario et al. (2023-09-19). "JWST's PEARLS: Mothra, a new kaiju star at z=2.091 extremely magnified by MACS0416, and implications for dark matter models" (in en). Astronomy & Astrophysics 679: A31. doi:10.1051/0004-6361/202347556. ISSN 0004-6361. Bibcode2023A&A...679A..31D. https://www.aanda.org/articles/aa/abs/forth/aa47556-23/aa47556-23.html. 
  130. Petit, V.; Drissen, L.; Crowther, P. A. (2005). "Quantitative analysis of STIS spectra of NGC 2363-V1". The Fate of the Most Massive Stars 332: 159. Bibcode2005ASPC..332..157P. 
  131. Pastorello, A.; Chen, T.-W.; Cai, Y.-Z.; Morales-Garoffolo, A.; Cano, Z.; Mason, E.; Barsukova, E. A.; Benetti, S. et al. (May 2019). "The evolution of luminous red nova AT 2017jfs in NGC 4470". Astronomy & Astrophysics 625: L8. doi:10.1051/0004-6361/201935511. ISSN 0004-6361. Bibcode2019A&A...625L...8P. https://www.aanda.org/10.1051/0004-6361/201935511. 
  132. Elias-Rosa, N.; Benetti, S.; Cappellaro, E.; Pastorello, A.; Terreran, G.; Morales-Garoffolo, A; Howerton, S. C.; Valenti, S. et al. (9 January 2018). "SNhunt151: an explosive event inside a dense cocoon". Monthly Notices of the Royal Astronomical Society 475 (2): 2614–2631. doi:10.1093/mnras/sty009. ISSN 0035-8711. Bibcode2018MNRAS.475.2614E. https://academic.oup.com/mnras/article/475/2/2614/4795309. 
  133. Elias-Rosa, N. (7 September 2016). "Dead or Alive? Long-term evolution of SN 2015bh (SNhunt275)". Monthly Notices of the Royal Astronomical Society 463 (4): 3894–3920. doi:10.1093/mnras/stw2253. ISSN 0035-8711. Bibcode2016MNRAS.463.3894E. https://academic.oup.com/mnras/article/463/4/3894/2646495. 
  134. Cai, Y. -Z. (3 December 2019). "The transitional gap transient AT 2018hso: new insights into the luminous red nova phenomenon". Astronomy & Astrophysics 631: 9. doi:10.1051/0004-6361/201936749. ISSN 0004-6361. Bibcode2019A&A...632L...6C. https://www.aanda.org/articles/aa/full_html/2019/12/aa36749-19/aa36749-19.html. 
  135. Jencson, Jacob E.; Adams, Scott M.; Bond, Howard E.; van Dyk, Schuyler D.; Kasliwal, Mansi M.; Bally, John; Blagorodnova, Nadejda; De, Kishalay et al. (2019-07-26). "Discovery of an Intermediate-luminosity Red Transient in M51 and Its Likely Dust-obscured, Infrared-variable Progenitor". The Astrophysical Journal 880 (2): L20. doi:10.3847/2041-8213/ab2c05. ISSN 2041-8213. Bibcode2019ApJ...880L..20J. 
  136. Smith, Nathan; Frew, David J. (2011). "A revised historical light curve of Eta Carinae and the timing of close periastron encounters". Monthly Notices of the Royal Astronomical Society 415 (3): 2009–2019. doi:10.1111/j.1365-2966.2011.18993.x. Bibcode2011MNRAS.415.2009S. 
  137. 137.0 137.1 Cai Y. -Z. (27 October 2021). "Intermediate-luminosity red transients: Spectrophotometric properties and connection to electron-capture supernova explosions". Astronomy & Astrophysics 654: 30. doi:10.1051/0004-6361/202141078. ISSN 0004-6361. Bibcode2021A&A...654A.157C. https://www.aanda.org/articles/aa/full_html/2021/10/aa41078-21/aa41078-21.html. 
  138. Pessi, Thallis; Prieto, Jose L.; Monard, Berto; Kochanek, Christopher S.; Bock, Greg; Drake, Andrew J.; Fox, Ori D.; Parker, Stuart et al. (4 April 2022). "Unveiling the Nature of SN 2011fh: A Young and Massive Star Gives Rise to a Luminous SN 2009ip-like Event". The Astrophysical Journal 928 (2): 21. doi:10.3847/1538-4357/ac562d. ISSN 1538-4357. Bibcode2022ApJ...928..138P. 
  139. 139.0 139.1 Soker, Noam; Kaplan, Noa (May 2021). "Explaining recently studied intermediate luminosity optical transients (ILOTs) with jet powering". Research in Astronomy and Astrophysics 21 (4): 9. doi:10.1088/1674-4527/21/4/90. ISSN 1674-4527. Bibcode2021RAA....21...90S. https://iopscience.iop.org/article/10.1088/1674-4527/21/4/90. 
  140. Stritzinger, M. D (22 July 2020). "The Carnegie Supernova Project II. Observations of the intermediate-luminosity red transient SNhunt120". Astronomy & Astrophysics 639: 17. doi:10.1051/0004-6361/202038018. ISSN 0004-6361. Bibcode2020A&A...639A.103S. https://www.aanda.org/articles/aa/full_html/2020/07/aa38018-20/aa38018-20.html. 
  141. Cai, Y. -Z; Pastorello, A.; Fraser, M.; Botticella, M. T.; Gall, C.; Arcavi, I.; Benetti, S.; Cappellaro, E. et al. (1 August 2018). "AT 2017be - a new member of the class of intermediate-luminosity red transients". Monthly Notices of the Royal Astronomical Society 480 (3): 3424–3445. doi:10.1093/mnras/sty2070. ISSN 0035-8711. Bibcode2018MNRAS.480.3424C. https://academic.oup.com/mnras/article/480/3/3424/5063576. 
  142. Allan, Andrew P; Groh, Jose H; Mehner, Andrea; Smith, Nathan; Boian, Ioana; Farrell, Eoin J; Andrews, Jennifer E (2020-08-01). "The possible disappearance of a massive star in the low-metallicity galaxy PHL 293B" (in en). Monthly Notices of the Royal Astronomical Society 496 (2): 1902–1908. doi:10.1093/mnras/staa1629. ISSN 0035-8711. https://academic.oup.com/mnras/article/496/2/1902/5863970. 
  143. Kankare, E.; Kotak, R.; Pastorello, A.; Fraser, M; Mattila, S.; Smartt, S. J.; Bruce, A.; Chambers, K. C. et al. (7 September 2015). "On the triple peaks of SNHunt248 in NGC 5806". Astronomy & Astrophysics 581: 7. doi:10.1051/0004-6361/201526631. ISSN 0004-6361. Bibcode2015A&A...581L...4K. https://www.aanda.org/articles/aa/full_html/2015/09/aa26631-15/aa26631-15.html. 
  144. Mehner, A.; Baade, D.; Rivinius, T.; Lennon, D. J.; Martayan, C.; Stahl, O.; Štefl, S. (July 2013). "Broad-band spectroscopy of the ongoing large eruption of the luminous blue variable R71". Astronomy & Astrophysics 555: A116. doi:10.1051/0004-6361/201321323. ISSN 0004-6361. Bibcode2013A&A...555A.116M. http://www.aanda.org/10.1051/0004-6361/201321323. 
  145. Aghakhanloo, Mojgan; Smith, Nathan; Milne, Peter; Andrews, Jennifer E.; Filippenko, Alexei V.; Jencson, Jacob E.; Sand, David J.; Van Dyk, Schuyler D. et al. (28 February 2023). "Repeating periodic eruptions of the supernova impostor SN 2000ch". Monthly Notices of the Royal Astronomical Society 521 (2): 1941–1957. doi:10.1093/mnras/stad630. ISSN 0035-8711. Bibcode2023MNRAS.521.1941A. https://academic.oup.com/mnras/article-abstract/521/2/1941/7060397. 
  146. 146.0 146.1 Aghakhanloo, Mojgan; Smith, Nathan; Milne, Peter; Andrews, Jennifer E.; Van Dyck, Schuyler D.; Filippenko, Alexei V.; Jencson, Jacob E.; Lau, Ryan N. et al. (7 September 2023). "Recurring outbursts of the supernova impostor AT 2016blu in NGC 4559". Monthly Notices of the Royal Astronomical Society 526 (1): 456–472. doi:10.1093/mnras/stad2702. ISSN 0035-8711. Bibcode2023MNRAS.526..456A. https://academic.oup.com/mnras/article/526/1/456/7263269. 
  147. 147.00 147.01 147.02 147.03 147.04 147.05 147.06 147.07 147.08 147.09 147.10 147.11 147.12 147.13 147.14 147.15 147.16 147.17 147.18 147.19 147.20 147.21 147.22 147.23 147.24 147.25 147.26 147.27 "The Early Ultraviolet Light-Curves of Type II Supernovae and the Radii of Their Progenitor Stars". 25 October 2023. arXiv:2310.16885 [astro-ph.HE].
  148. Salmaso, I.; Cappellaro, E.; Tartaglia, L.; Benetti, S.; Botticella, M. T.; Elias-Rosa, M.; Pastorello, A.; Patat, F. et al. (May 2023). "Hidden shock powering the peak of SN 2020faa". Astronomy & Astrophysics 673: 14. doi:10.1051/0004-6361/202245781. ISSN 0004-6361. Bibcode2023A&A...673A.127S. https://ui.adsabs.harvard.edu/abs/2023A%26A...673A.127S/abstract. 
  149. "Papers with Code - The Dusty and Extremely Red Progenitor of the Type II Supernova 2023ixf in Messier 101" (in en). https://astro.paperswithcode.com/paper/the-dusty-and-extremely-red-progenitor-of-the. 
  150. Qin, Y.; Zhang, Keming; Bloom, J.; Sollerman, J.; Zimmerman, E.; Irani, I.; Schulze, S.; Gal-yam, A. et al. (2023-09-18). "The Progenitor Star of SN 2023ixf: A Massive Red Supergiant with Enhanced, Episodic Pre-Supernova Mass Loss". 
  151. Kilpatrick, Charles D. (29 June 2023). "EType II-P supernova progenitor star initial masses and SN 2020jfo: direct detection, light-curve properties, nebular spectroscopy, and local environment". Monthly Notices of the Royal Astronomical Society 524 (2): 2161–2185. doi:10.1093/mnras/stad1954. ISSN 0035-8711. Bibcode2023MNRAS.524.2161K. https://academic.oup.com/mnras/article-abstract/524/2/2161/7210545?redirectedFrom=fulltext. 
  152. "Evidence of weak circumstellar medium interaction in the Type II SN 2023axu". 29 September 2023. arXiv:2310.00162 [astro-ph.HE].
  153. Yan, Shengyu; Wang, Xiaofeng; Gao, Xing; Zhang, Jujia; Brink, Thomas G.; Mo, Jun; Lin, Weili; Xiang, Danfeng; Ma, Xiaoran; Guo, Fangzhou; Tomasella, Lina; Benetti, Stefano; Cai, Yongzhi; Cappellaro, Enrico; Chen, Zhihao; Li, Zhitong; Pastorello, Andrea; Zhang, Tiangmeng (7 October 2023). "Discovery of the Closest Ultrastripped Supernova: SN 2021agco in UGC 3855". arXiv:2310.04827 [astro-ph.HE].

Cite error: <ref> tag with name "cioni" defined in <references> is not used in prior text.
Cite error: <ref> tag with name "dustsgr" defined in <references> is not used in prior text.
Cite error: <ref> tag with name "c-rich" defined in <references> is not used in prior text.
Cite error: <ref> tag with name "olofsson" defined in <references> is not used in prior text.
Cite error: <ref> tag with name "lombaert" defined in <references> is not used in prior text.
Cite error: <ref> tag with name "n300" defined in <references> is not used in prior text.
Cite error: <ref> tag with name "Jones2018" defined in <references> is not used in prior text.

Cite error: <ref> tag with name "humphreys2019" defined in <references> is not used in prior text.

External links