Aluthge transform

From HandWiki

In mathematics and more precisely in functional analysis, the Aluthge transformation is an operation defined on the set of bounded operators of a Hilbert space. It was introduced by Ariyadasa Aluthge to study p-hyponormal linear operators.[1]

Definition

Let [math]\displaystyle{ H }[/math] be a Hilbert space and let [math]\displaystyle{ B(H) }[/math] be the algebra of linear operators from [math]\displaystyle{ H }[/math] to [math]\displaystyle{ H }[/math]. By the polar decomposition theorem, there exists a unique partial isometry [math]\displaystyle{ U }[/math] such that [math]\displaystyle{ T=U|T| }[/math] and [math]\displaystyle{ \ker(U)\supset\ker(T) }[/math], where [math]\displaystyle{ |T| }[/math] is the square root of the operator [math]\displaystyle{ T^*T }[/math]. If [math]\displaystyle{ T\in B(H) }[/math] and [math]\displaystyle{ T=U|T| }[/math] is its polar decomposition, the Aluthge transform of [math]\displaystyle{ T }[/math] is the operator [math]\displaystyle{ \Delta(T) }[/math] defined as:

[math]\displaystyle{ \Delta(T)=|T|^{\frac12}U|T|^{\frac12}. }[/math]

More generally, for any real number [math]\displaystyle{ \lambda\in [0,1] }[/math], the [math]\displaystyle{ \lambda }[/math]-Aluthge transformation is defined as

[math]\displaystyle{ \Delta_\lambda(T):=|T|^{\lambda}U|T|^{1-\lambda}\in B(H). }[/math]

Example

For vectors [math]\displaystyle{ x,y \in H }[/math], let [math]\displaystyle{ x\otimes y }[/math] denote the operator defined as

[math]\displaystyle{ \forall z\in H\quad x\otimes y(z)=\langle z,y\rangle x. }[/math]

An elementary calculation[2] shows that if [math]\displaystyle{ y\ne0 }[/math], then [math]\displaystyle{ \Delta_\lambda(x\otimes y)=\Delta(x\otimes y)=\frac{\langle x,y\rangle}{\lVert y \rVert^2} y\otimes y. }[/math]

Notes

  1. Aluthge, Ariyadasa (1990). "On p-hyponormal operators for 0 < p < 1". Integral Equations Operator Theory 13 (3): 307–315. doi:10.1007/bf01199886. 
  2. Chabbabi, Fadil; Mbekhta, Mostafa (June 2017). "Jordan product maps commuting with the λ-Aluthge transform". Journal of Mathematical Analysis and Applications 450 (1): 293–313. doi:10.1016/j.jmaa.2017.01.036. 

References

External links