Search for narrow baryonic states in DIS events at HERA

Electron (30 GeV)

S.V.Chekanov (ANL)

ZEUS Collaboration

DISO4, High Tatras, Slovakia, April 14-18, 2004

Introduction-I

Constituent Quark Model (CQM) describes:

- Mesons as bound state of a quark and an antiquark: $oldsymbol{q}$ $oldsymbol{ar{q}}$
- Baryons as bound state of three quarks: q q q +absence of baryons with strangeness S=+1

CQM does not predict more complicated states, but can accommodate them:

- Examples:
 excitations of QCD vacuum (glueballs): g g
 - states with an excited gluon (hybrids): q q g, q q q g
 - multiquark states: q q q q q q q q q q q q etc.. (could have S=+1)
 Many models available

Chiral Quark Soliton model (D.Diakonov, V.Petrov and M. Polyakov):

- Baryons: rotational states of the soliton nucleon in spin and isospin space
- Predicted: spin 1/2, isospin 0, strangeness S=+1, mass (~1530 MeV), width (<15 MeV)</p>
 - very narrow CQM cannot explain this, the soliton model can!
- lightest baryon has quark structure $uudd\bar{d}\bar{s}$

Introduction-II

- A number of low-energy fixed-target experiments observed a narrow baryonic resonance at ~ 1530 MeV with positive strangeness (K⁺ n decays)
- Consistent with the pentaguark predictions $u u d d \bar{s}$ with Γ <15 MeV
- Decay mode K^op also possible:
 - observations by DIANA, HERMES, SVD, COSY-TOF experiments

Other possible candidates:

- $\Xi\pi$ channel (NA49): $\Xi^{--}_{3/2}$ and $\Xi^{0}_{3/2}$
- consistent with: ddssü
 udssd

If all these measurements will be confirmed and quantum numbers will be determined, this would establish $\overline{10}_{f}$

K⁰_s p decays in DIS

- Unlike fixed-target experiments, higher-energy colliding experiments have little sensitivity to the proton remnant:
 - Look at central rapidity regions dominated by fragmentation
 - Can pentaguarks be created without the net baryon number?

fixed-target experiments

colliding experiments

• PDG reports Σ bumps (unestablished resonances) for this decay channel \rightarrow complicates the search!

Note from PDG: o evidence of existence of Σ bumps is only fair or poor (* or ** in PDG) o too low in mass to be accommodated in most quark models o never been seen in HEP experiments

DIS kinematics

S: e - p c.m. energy

 $\sqrt{s} = 300 - 318 \, GeV$

- $Q^2 = -q^2$: 4-momentum transfer squared
- x: fraction of proton momentum carried by quark
- y: inelasticity parameter
- **W**: γ -*p* c.m. energy

Event selection

- 121 pb⁻¹, HERA-I
 e⁺p, e⁻p collisions
 CM energy of 300-318 GeV;
- Q²>1 GeV².

K⁰_s selection

- CTD tracks, p_T>150 MeV, -1.75 < η < 1.75;</p>
- K⁰_s reconstructed from secondary-vertex tracks;
- Photon conversions removed: $M(e^+e^-) < 50 \text{ MeV}$;
- Λ 's removed $M(\pi p) < 1121$ MeV;
- p_T(K⁰)>300 MeV; |n (K⁰)| < 1.5.</p>
- Resolution for Kp masses: ~ 2.0 ±0.5 MeV

MC simulation + consistent with measurements for K^* and Λ_c

K⁰_s and (anti)proton candidates

Fit: Double Gaussian + linear background ~870000 candidates Background <6 % Peak:498.12 ± 0.01 (stat) MeV

Proton(antiproton) candidates

primary tracks
 f< dE/dX <F
 dE/dX>1.15 mips
 p<1.5 GeV

Results: K⁰_s p decays

- Structures near 1522 MeV and below
 - increase with Q²
 - decrease with W

Results: K⁰_s p decays: Q² > 20 GeV²

Fitting function: F(M)=2 Gaussians +P1(M-m)^{P2} (1+P3(M-m)) where m=m_K +m_P and $P_{1,2,3}$ - free parameters

Peak:

1521±1.5(stat.)^{+2.8}_{-1.7} (syst.) MeV

Gaussian width:

6.1±1.6(stat.)⁺²_{-1.4} (syst.) MeV

- 221 ± 48 events (4.6 σ)
- K^o_s antiproton: 96±34 candidates antipentaguarks?

Results: K⁰_s p decays

MC experiment to estimate significance (for mass range 1500-1560 MeV): Pr=6x10⁻⁵ -> similar signal from fluctuations of (threshold) background Pr=6x10⁻⁶ -> threshold + additional Gaussian to describe 1480 MeV region

What about the natural width?

- 8±4(stat.) MeV from Breit-Wigner fit convoluted with 2 MeV Gaussian resolution
- systematics is difficult to estimate

too narrow, not enough statistics, difficult background

Results: K⁺p decays

If 0⁺ is NK bound state, isospins 0 and 1 are both possible

- isospin 1 would lead to 3 states: $\theta^{\scriptscriptstyle 0},\,\theta^{\scriptscriptstyle +},\,\theta^{\scriptscriptstyle ++}$
- look at $\theta^{++} \rightarrow pK^+$ decays

dE/dX was used for both K-mesons and protons

- No θ⁺⁺
- Clean $\Lambda(1520)$ D₀₃ signal
- $N(\Lambda) \sim N(\Lambda)$

🐟 main source - fragmentation

S.Chekanov (ANL) : Search for narrow baryonic states in DIS (DIS04, April 2004)

M (GeV)

Looking at NA49 signal

Summing 4 channels: -> 5.6 σ confidence

mass ~1862 MeV

width < 18 MeV

- NA49 fixed target experiment
- Proton-proton collisions ($\int s=17.2 \text{ GeV}$)
- Large acceptance in the forward region

Similar analysis repeated using ZEUS DIS data:

Candidate reconstruction:

- Step 1: Λ from VO
- **Step 2**: Ξ from $\Lambda\pi$
 - Use tracks with small DCA (<1 cm)
 - r(Λ)>r(Ξ)
 - r(Ξ)>1.75 cm
- Step 3: combine Ξ with vertex-fitted pion

dE/dX cut for each step to clean the signals

- ZEUS has higher statistics
- Smaller background

- NA49 signal(pentaquark) / signal($\Xi(1530)$) ~ 6-8
- If ZEUS sensitivity to the pentaguark is the same

pentaquark signal should not be overlooked

Summary

K⁰ p decay

Evidence for a new narrow baryonic state at 1522 MeV:

- mass and width agree with the pentaguark prediction
- good agreement with other measurements
- consistent with the exotic K⁺n channel:
 - → mass ~ 1540-1550 MeV, with ~ 10 MeV errors
- No $\Lambda\pi$ decay mode
- No PDG Σ state in this mass range

-> Favor pentaguark explanation

In this interpretation:

- first observation of pentaquark in fragmentation region
- first observation of antipentaquark
- No Ø⁺⁺ peak

No evidence for the NA49 pentaquark:

- ZEUS data very competitive: low background, higher statistics, good tracking resolution
- ZEUS can only miss this signal if it is outside of the detector acceptance (forward region)