

(published)

# ATLAS data analysis at ANL

S.Chekanov



# Direct photons (B.Blair, S.C, S.Norberg)

- extension of the published 2010 results
  - now using ~5 fb<sup>-1</sup>
- pT(gamma) range: 100 GeV -1 TeV
- Expected stat. uncertainty:
  - ~ 40% at 1 TeV
- Working in many areas:
  - final cross sections
  - systematics
  - extension for JETPHOX 1.3 NLO:
    - From ROOT Trees → Cross sections with all uncertainties.
    - "Realistic" antiKT04 (based on Fastjet)
    - (Can be used for gamma+jets)
    - Parallel processing on many cores





#### **Direct photons** (B.Blair, S.C, S.Norberg)





# **Z-γ final state** (Benjamin Auerbach, S.C.)





# $H \rightarrow \gamma\gamma + N jet searches (A.Kruze/B.Mellado)$

- Higgs with associated jets
- Richer kinematic structure (compared to  $H \rightarrow$  gamma gamma)
  - refined cuts may help to increase S/B
- But smaller rate





# SM jet-shape measurements (Lily Asquith, S.C, Jimmy, Rik)

- Measurements of:
  - jet mass, jet width, eccentricity, planar flow, angularity
- Concentrate on comparison with PYTHIA & HERWIG
- Develop a technique to correct for pile-up (+Toronto group)

#### Essential study for searches for new particles beyond the TeV scale

S.C., J.Proudfoot, Phys. Rev. D81 (2010) 114038 S.C., C.Levy, J.Proudfoot, R.Yoshida, Phys. Rev. D 82, 094029 (2010) + many more!



### Boosted top quarks (S.C,C.Chen,Rik,Jimmy, etc.)

- Look at pT nobody looked before:
  - Start from 1 TeV jets
  - Use "standard" antiKT jet 0.6
  - Look at fully hadronic decays:
    - Use jet masses in combination with jet shapes
- No tops above pT>1 TeV expected from PYTHIA (for 5 fb<sup>-1</sup>):
  - Expected cross section 0.4 fb for jets with pT > 1 TeV and |eta|<0.6</li>
- Good collaboration with Markus Schulze to calculate NLO cross sections using MCFM:
  - Currently the ATLAS farm is used for scale/PDF uncertainty calculations





## **Boosted W bosons.** (C.Chen (Iowa group)+SC)

- Use jet-shapes to find boosted W (hadronic decay)
- Start from pT>300 GeV (for jets)
- Build a likelihood function, identify variables with the best sensitivity etc.
- Use a MC template method to extract the W signal

#### **Top reconstruction** (R.Calkin/C.Suhr+ NIU)

- b-tagging efficiency for ttbar
- single-tops using the "cut method"

#### General searches (S.C / J.Boomsma/M.Erickson)

Recent paper: A non-parametric peak finder algorithm and its application in searches for new physics E-print: arxiv.org:1110.3772  $\begin{array}{c} \mathbf{g} \\ \mathbf{$ 

Theory seminar . S.Chekanov (ANL)



 $W \rightarrow \mu v + jets$ 

Alpgen Sherpa

Pythia MCFM

#### W/Z + N jets (A.Paramonov/B.Martin)

- The analysis "phase-out"
- Results are public
- New results will be published soon
  - improved systematic uncertainties

#### Searches for final states with 3 leptons (A.Paramonov/Dong Nguyen)

- SUSY searches

- gluino-gluino  $\rightarrow$  4 top quarks + 2 neutralinos

#### Compressed supersymmetry (Tom LeCompte/Dong Nguyen )

- Jet+missET final state.
- Defined the region sensitive to compressed SUSY
- Working on systematic uncertainties
- Paper: http://arxiv.org/abs/1111.6897
  - this hits the edge of my knowledge -Tom help!



≥2

≥3

Inclusive Jet Multiplicity, N<sub>iet</sub>

≥4

10<sup>4</sup>

 $10^{2}$ 

10

1.5

0.5

>0

Ldt=1.3 pb<sup>-1</sup>

ATLAS

σ(W + ≥N<sub>jet</sub> jets) [pb]

Theory/Data

#### Theory seminar . S.Chekanov (ANL)