Generalizations of Pauli matrices

From HandWiki
Revision as of 19:08, 6 February 2024 by OrgMain (talk | contribs) (correction)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In mathematics and physics, in particular quantum information, the term generalized Pauli matrices refers to families of matrices which generalize the (linear algebraic) properties of the Pauli matrices. Here, a few classes of such matrices are summarized.

Multi-qubit Pauli matrices (Hermitian)

This method of generalizing the Pauli matrices refers to a generalization from a single 2-level system (qubit) to multiple such systems. In particular, the generalized Pauli matrices for a group of [math]\displaystyle{ N }[/math] qubits is just the set of matrices generated by all possible products of Pauli matrices on any of the qubits.[1]

The vector space of a single qubit is [math]\displaystyle{ V_1 = \mathbb{C}^2 }[/math] and the vector space of [math]\displaystyle{ N }[/math] qubits is [math]\displaystyle{ V_N = \left(\mathbb{C}^2\right)^{\otimes N}\cong \mathbb{C}^{2^N} }[/math]. We use the tensor product notation

[math]\displaystyle{ \sigma_a^{(n)} = I^{(1)} \otimes \dotsm \otimes I^{(n-1)} \otimes \sigma_a \otimes I^{(n+1)} \otimes \dotsm \otimes I^{(N)}, \qquad a = 1, 2, 3 }[/math]

to refer to the operator on [math]\displaystyle{ V_N }[/math] that acts as a Pauli matrix on the [math]\displaystyle{ n }[/math]th qubit and the identity on all other qubits. We can also use [math]\displaystyle{ a = 0 }[/math] for the identity, i.e., for any [math]\displaystyle{ n }[/math] we use [math]\displaystyle{ \sigma_0^{(n)} = \bigotimes_{m=1}^N I^{(m)} }[/math]. Then the multi-qubit Pauli matrices are all matrices of the form

[math]\displaystyle{ \sigma_{\,\vec a} := \bigotimes_{n=1}^N \sigma_{a_n}^{(n)} = \sigma_{a_1}^{(1)} \otimes \dotsm \otimes \sigma_{a_N}^{(N)}, \qquad \vec{a} = (a_1, \ldots, a_N) \in \{0, 1, 2, 3\}^{\times N} }[/math],

i.e., for [math]\displaystyle{ \vec{a} }[/math] a vector of integers between 0 and 4. Thus there are [math]\displaystyle{ 4^N }[/math] such generalized Pauli matrices if we include the identity [math]\displaystyle{ I = \bigotimes_{m=1}^N I^{(m)} }[/math] and [math]\displaystyle{ 4^N - 1 }[/math] if we do not.

Higher spin matrices (Hermitian)

The traditional Pauli matrices are the matrix representation of the [math]\displaystyle{ \mathfrak{su}(2) }[/math] Lie algebra generators [math]\displaystyle{ J_x }[/math], [math]\displaystyle{ J_y }[/math], and [math]\displaystyle{ J_z }[/math] in the 2-dimensional irreducible representation of SU(2), corresponding to a spin-1/2 particle. These generate the Lie group SU(2).

For a general particle of spin [math]\displaystyle{ s=0,1/2,1,3/2,2,\ldots }[/math], one instead utilizes the [math]\displaystyle{ 2s+1 }[/math]-dimensional irreducible representation.


Generalized Gell-Mann matrices (Hermitian)

This method of generalizing the Pauli matrices refers to a generalization from 2-level systems (Pauli matrices acting on qubits) to 3-level systems (Gell-Mann matrices acting on qutrits) and generic [math]\displaystyle{ d }[/math]-level systems (generalized Gell-Mann matrices acting on qudits).

Construction

Let [math]\displaystyle{ E_{jk} }[/math] be the matrix with 1 in the jk-th entry and 0 elsewhere. Consider the space of [math]\displaystyle{ d\times d }[/math] complex matrices, [math]\displaystyle{ \Complex^{d\times d} }[/math], for a fixed [math]\displaystyle{ d }[/math].

Define the following matrices,

[math]\displaystyle{ f_{k,j}^{\,\,\,\,\, d} = \begin{cases}E_{kj} + E_{jk} & {\text{for }}k \lt j,\\ -i(E_{jk} - E_{kj})&{\text{for }} k \gt j.\end{cases} }[/math]

and

[math]\displaystyle{ h_{k}^{\,\,\, d} = \begin{cases}I_d & {\text{for }} k = 1,\\ h_{k}^{\,\,\, d-1} \oplus 0 &{\text{for }} 1 \lt k \lt d, \\ \sqrt{\tfrac{2}{d(d - 1)}} \left( h_1^{d-1} \oplus (1 - d)\right) = \sqrt{\tfrac{2}{d(d - 1)}} \left( I_{d-1} \oplus (1 - d)\right) &{\text{for }} k = d \end{cases} }[/math]

The collection of matrices defined above without the identity matrix are called the generalized Gell-Mann matrices, in dimension [math]\displaystyle{ d }[/math].[2][3] The symbol ⊕ (utilized in the Cartan subalgebra above) means matrix direct sum.

The generalized Gell-Mann matrices are Hermitian and traceless by construction, just like the Pauli matrices. One can also check that they are orthogonal in the Hilbert–Schmidt inner product on [math]\displaystyle{ \Complex^{d\times d} }[/math]. By dimension count, one sees that they span the vector space of [math]\displaystyle{ d\times d }[/math] complex matrices, [math]\displaystyle{ \mathfrak{gl}(d,\Complex) }[/math]. They then provide a Lie-algebra-generator basis acting on the fundamental representation of [math]\displaystyle{ \mathfrak{su}(d) }[/math].

In dimensions [math]\displaystyle{ d }[/math] = 2 and 3, the above construction recovers the Pauli and Gell-Mann matrices, respectively.

Sylvester's generalized Pauli matrices (non-Hermitian)

A particularly notable generalization of the Pauli matrices was constructed by James Joseph Sylvester in 1882.[4] These are known as "Weyl–Heisenberg matrices" as well as "generalized Pauli matrices".[5][6]

Framing

The Pauli matrices [math]\displaystyle{ \sigma _1 }[/math] and [math]\displaystyle{ \sigma _3 }[/math] satisfy the following:

[math]\displaystyle{ \sigma_1^2 = \sigma_3^2 = I, \quad \sigma_1 \sigma_3 = - \sigma_3 \sigma_1 = e^{\pi i} \sigma_3 \sigma_1. }[/math]

The so-called Walsh–Hadamard conjugation matrix is

[math]\displaystyle{ W = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}. }[/math]

Like the Pauli matrices, [math]\displaystyle{ W }[/math] is both Hermitian and unitary. [math]\displaystyle{ \sigma_1, \; \sigma_3 }[/math] and [math]\displaystyle{ W }[/math] satisfy the relation

[math]\displaystyle{ \; \sigma_1 = W \sigma_3 W^* . }[/math]

The goal now is to extend the above to higher dimensions, [math]\displaystyle{ d }[/math].

Construction: The clock and shift matrices

Fix the dimension [math]\displaystyle{ d }[/math] as before. Let [math]\displaystyle{ \omega = \exp(2 \pi i / d) }[/math], a root of unity. Since [math]\displaystyle{ \omega^d = 1 }[/math] and [math]\displaystyle{ \omega \neq 1 }[/math], the sum of all roots annuls:

[math]\displaystyle{ 1 + \omega + \cdots + \omega ^{d-1} = 0 . }[/math]

Integer indices may then be cyclically identified mod d.

Now define, with Sylvester, the shift matrix

[math]\displaystyle{ \Sigma _1 = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & 1\\ 1 & 0 & 0 & \cdots & 0 & 0\\ 0 & 1 & 0 & \cdots & 0 & 0\\ 0 & 0 & 1 & \cdots & 0 & 0\\ \vdots & \vdots & \vdots & \ddots &\vdots &\vdots\\ 0 & 0 & 0 & \cdots & 1 & 0\\ \end{bmatrix} }[/math]

and the clock matrix,

[math]\displaystyle{ \Sigma _3 = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0\\ 0 & \omega & 0 & \cdots & 0\\ 0 & 0 & \omega^2 & \cdots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & 0 & \cdots & \omega^{d-1} \end{bmatrix}. }[/math]

These matrices generalize [math]\displaystyle{ \sigma_1 }[/math] and [math]\displaystyle{ \sigma_3 }[/math], respectively.

Note that the unitarity and tracelessness of the two Pauli matrices is preserved, but not Hermiticity in dimensions higher than two. Since Pauli matrices describe quaternions, Sylvester dubbed the higher-dimensional analogs "nonions", "sedenions", etc.

These two matrices are also the cornerstone of quantum mechanical dynamics in finite-dimensional vector spaces[7][8][9] as formulated by Hermann Weyl, and they find routine applications in numerous areas of mathematical physics.[10] The clock matrix amounts to the exponential of position in a "clock" of [math]\displaystyle{ d }[/math] hours, and the shift matrix is just the translation operator in that cyclic vector space, so the exponential of the momentum. They are (finite-dimensional) representations of the corresponding elements of the Weyl-Heisenberg group on a [math]\displaystyle{ d }[/math]-dimensional Hilbert space.

The following relations echo and generalize those of the Pauli matrices:

[math]\displaystyle{ \Sigma_1^d = \Sigma_3^d = I }[/math]

and the braiding relation,

[math]\displaystyle{ \Sigma_3 \Sigma_1 = \omega \Sigma_1 \Sigma_3 = e^{2\pi i / d} \Sigma_1 \Sigma_3 , }[/math]

the Weyl formulation of the CCR, and can be rewritten as

[math]\displaystyle{ \Sigma_3 \Sigma_1 \Sigma_3^{d-1} \Sigma_1^{d-1} = \omega ~. }[/math]

On the other hand, to generalize the Walsh–Hadamard matrix [math]\displaystyle{ W }[/math], note

[math]\displaystyle{ W = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & \omega^{2-1} \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & \omega^{d-1} \end{bmatrix}. }[/math]

Define, again with Sylvester, the following analog matrix,[11] still denoted by [math]\displaystyle{ W }[/math] in a slight abuse of notation,

[math]\displaystyle{ W = \frac{1}{\sqrt{d}} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1\\ 1 & \omega^{d-1} & \omega^{2(d-1)} & \cdots & \omega^{(d-1)^2}\\ 1 & \omega^{d-2} & \omega^{2(d-2)} & \cdots & \omega^{(d-1)(d-2)}\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 1 & \omega & \omega ^2 & \cdots & \omega^{d-1} \end{bmatrix}~. }[/math]

It is evident that [math]\displaystyle{ W }[/math] is no longer Hermitian, but is still unitary. Direct calculation yields

[math]\displaystyle{ \Sigma_1 = W \Sigma_3 W^* ~, }[/math]

which is the desired analog result. Thus, [math]\displaystyle{ W }[/math], a Vandermonde matrix, arrays the eigenvectors of [math]\displaystyle{ \Sigma_1 }[/math], which has the same eigenvalues as [math]\displaystyle{ \Sigma_3 }[/math].

When [math]\displaystyle{ d = 2^k }[/math], [math]\displaystyle{ W^* }[/math] is precisely the discrete Fourier transform matrix, converting position coordinates to momentum coordinates and vice versa.

Definition

The complete family of [math]\displaystyle{ d^2 }[/math] unitary (but non-Hermitian) independent matrices [math]\displaystyle{ \{\sigma_{k,j}\}_{k,j=1}^d }[/math] is defined as follows:

[math]\displaystyle{ \sigma_{k,j}:= \left(\Sigma_1\right)^k \left(\Sigma_3\right)^j = \sum_{m=0}^{d-1} |m+k\rangle \omega^{jm} \langle m|. }[/math]

This provides Sylvester's well-known trace-orthogonal basis for [math]\displaystyle{ \mathfrak{gl}(d,\Complex) }[/math], known as "nonions" [math]\displaystyle{ \mathfrak{gl}(3,\Complex) }[/math], "sedenions" [math]\displaystyle{ \mathfrak{gl}(4,\Complex) }[/math], etc...[12][13]

This basis can be systematically connected to the above Hermitian basis.[14] (For instance, the powers of [math]\displaystyle{ \Sigma_3 }[/math], the Cartan subalgebra, map to linear combinations of the [math]\displaystyle{ h_{k}^{\,\,\, d} }[/math] matrices.) It can further be used to identify [math]\displaystyle{ \mathfrak{gl}(d,\Complex) }[/math], as [math]\displaystyle{ d \to \infty }[/math], with the algebra of Poisson brackets.

Properties

With respect to the Hilbert–Schmidt inner product on operators, [math]\displaystyle{ \langle A, B \rangle_\text{HS} = \operatorname{Tr}(A^* B) }[/math], Sylvester's generalized Pauli operators are orthogonal and normalized to [math]\displaystyle{ \sqrt{d} }[/math]:

[math]\displaystyle{ \langle \sigma_{k,j}, \sigma_{k',j'} \rangle_{\text{HS}} = \delta_{k k'}\delta_{j j'} \| \sigma_{k,j}\|^2_{\text{HS}} = d \delta_{k k'}\delta_{j j'} }[/math].

This can be checked directly from the above definition of [math]\displaystyle{ \sigma_{k,j} }[/math].

See also

Notes

  1. Brown, Adam R.; Susskind, Leonard (2018-04-25). "Second law of quantum complexity". Physical Review D 97 (8): 086015. doi:10.1103/PhysRevD.97.086015. Bibcode2018PhRvD..97h6015B. 
  2. Kimura, G. (2003). "The Bloch vector for N-level systems". Physics Letters A 314 (5–6): 339–349. doi:10.1016/S0375-9601(03)00941-1. Bibcode2003PhLA..314..339K. 
  3. Bertlmann, Reinhold A.; Philipp Krammer (2008-06-13). "Bloch vectors for qudits". Journal of Physics A: Mathematical and Theoretical 41 (23): 235303. doi:10.1088/1751-8113/41/23/235303. ISSN 1751-8121. Bibcode2008JPhA...41w5303B. 
  4. Sylvester, J. J., (1882), Johns Hopkins University Circulars I: 241-242; ibid II (1883) 46; ibid III (1884) 7–9. Summarized in The Collected Mathematics Papers of James Joseph Sylvester (Cambridge University Press, 1909) v III . online and further.
  5. Appleby, D. M. (May 2005). "Symmetric informationally complete–positive operator valued measures and the extended Clifford group" (in en). Journal of Mathematical Physics 46 (5): 052107. doi:10.1063/1.1896384. ISSN 0022-2488. Bibcode2005JMP....46e2107A. http://aip.scitation.org/doi/10.1063/1.1896384. 
  6. Howard, Mark; Vala, Jiri (2012-08-15). "Qudit versions of the qubit π / 8 gate" (in en). Physical Review A 86 (2): 022316. doi:10.1103/PhysRevA.86.022316. ISSN 1050-2947. Bibcode2012PhRvA..86b2316H. https://link.aps.org/doi/10.1103/PhysRevA.86.022316. 
  7. Weyl, H., "Quantenmechanik und Gruppentheorie", Zeitschrift für Physik, 46 (1927) pp. 1–46, doi:10.1007/BF02055756.
  8. Weyl, H., The Theory of Groups and Quantum Mechanics (Dover, New York, 1931)
  9. Santhanam, T. S.; Tekumalla, A. R. (1976). "Quantum mechanics in finite dimensions". Foundations of Physics 6 (5): 583. doi:10.1007/BF00715110. Bibcode1976FoPh....6..583S. 
  10. For a serviceable review, see Vourdas A. (2004), "Quantum systems with finite Hilbert space", Rep. Prog. Phys. 67 267. doi:10.1088/0034-4885/67/3/R03.
  11. Sylvester, J.J. (1867). "Thoughts on inverse orthogonal matrices, simultaneous sign-successions, and tessellated pavements in two or more colours, with applications to Newton's rule, ornamental tile-work, and the theory of numbers". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 34 (232): 461–475. doi:10.1080/14786446708639914. 
  12. Patera, J.; Zassenhaus, H. (1988). "The Pauli matrices in n dimensions and finest gradings of simple Lie algebras of type An−1". Journal of Mathematical Physics 29 (3): 665. doi:10.1063/1.528006. Bibcode1988JMP....29..665P. 
  13. Since all indices are defined cyclically mod d, [math]\displaystyle{ \mathrm{tr}\Sigma_1^j \Sigma_3^k \Sigma_1^m \Sigma_3^n = \omega^{km} d ~\delta_{j+m,0} \delta_{k+n,0} }[/math].
  14. Fairlie, D. B.; Fletcher, P.; Zachos, C. K. (1990). "Infinite-dimensional algebras and a trigonometric basis for the classical Lie algebras". Journal of Mathematical Physics 31 (5): 1088. doi:10.1063/1.528788. Bibcode1990JMP....31.1088F.