Class ConstantCurvature

  • All Implemented Interfaces:
    EventListener, ChangeListener, Decorateable, Parameterizable

    public class ConstantCurvatureextends SpaceCurveParametric
    Defines a space curve of constant curvature kappa by integrating the Frenet equations with kappa=aa and a torsion function tau(t) = bb + cc*sin(t) + dd*sin(2t) + ee*sin(3t). This Class behaves like an explicitly parametrized curve, because the program precomputes the Frenet frame on 100 points between tmin and tmax so that, when the Superclass calls the method Vector3D value(), the ODEsolver only has to integrate from the nearest precomputed point.
    • Constructor Detail

      • ConstantCurvature

        public ConstantCurvature()
    • Method Detail

      • getExampleNumberFunction

        public int getExampleNumberFunction()
      • setExampleNumberFunction

        public void setExampleNumberFunction(int exampleNumber)
      • parameterChanged

        public void parameterChanged(Parameter param,                    Object oldValue,                    Object newValue)
        Description copied from class: Exhibit
        This method will be called automatically when a parameter that has been added to this Exhibit is changed. It should not ordinarily be called directly. Note that in fact, this method simply calls forceRedraw. This method is defined in the <@link Parameterizable} interface.
        Specified by:
        parameterChanged in interface Parameterizable
        parameterChanged in class Exhibit
        param - The Parmeter whose value has been set.
        oldValue - The previous value of the parameter.
        newValue - The new, current value of the parameter. This is not necessarily guaranteed to be different from the old value (although it is for parameters definedin the VMM core).
        See Also:
      • makeRepereMobile

        public Vector3D[] makeRepereMobile(double t)
        Description copied from class: SpaceCurveParametric
        Returns an array of four vectors representing the Repere Mobile to the curve at a specified t value. The array has length 4. The first vector is the point on the curve, and the other three vectors are the unit tangent, unit normal, and unit bi-normal to the curve at that point. The return value can be null, if the curve or its first or second derivative is not defined at the specified point. If the return value is non-null, then all four vectors in the returned array are non-null.
        makeRepereMobile in class SpaceCurveParametric

SCaVis 2.2 © jWork.ORG