Documentation API of the '' Java class

Class BasicTrainSOM

  • All Implemented Interfaces:
    MLTrain, LearningRate

    public class BasicTrainSOMextends BasicTrainingimplements LearningRate
    This class implements competitive training, which would be used in a winner-take-all neural network, such as the self organizing map (SOM). This is an unsupervised training method, no ideal data is needed on the training set. If ideal data is provided, it will be ignored. Training is done by looping over all of the training elements and calculating a "best matching unit" (BMU). This BMU output neuron is then adjusted to better "learn" this pattern. Additionally, this training may be applied to other "nearby" output neurons. The degree to which nearby neurons are update is defined by the neighborhood function. A neighborhood function is required to determine the degree to which neighboring neurons (to the winning neuron) are updated by each training iteration. Because this is unsupervised training, calculating an error to measure progress by is difficult. The error is defined to be the "worst", or longest, Euclidean distance of any of the BMU's. This value should be minimized, as learning progresses. Because only the BMU neuron and its close neighbors are updated, you can end up with some output neurons that learn nothing. By default these neurons are not forced to win patterns that are not represented well. This spreads out the workload among all output neurons. This feature is not used by default, but can be enabled by setting the "forceWinner" property.

Warning: You cannot see the full API documentation of this class since the access to the DatMelt documentation for third-party Java classes is denied. Guests can only view jhplot Java API. To view the complete description of this class and its methods, please request the full DataMelt membership.

If you are already a full member, please login to the DataMelt member area before visiting this documentation.