BasicPNN
org.encog.neural.pnn

Class BasicPNN

  • All Implemented Interfaces:
    Serializable, MLInput, MLInputOutput, MLMethod, MLOutput, MLProperties, MLRegression


    public class BasicPNNextends AbstractPNNimplements MLRegression
    This class implements either a: Probabilistic Neural Network (PNN) General Regression Neural Network (GRNN) To use a PNN specify an output mode of classification, to make use of a GRNN specify either an output mode of regression or un-supervised autoassociation. The PNN/GRNN networks are potentially very useful. They share some similarities with RBF-neural networks and also the Support Vector Machine (SVM). These network types directly support the use of classification. The following book was very helpful in implementing PNN/GRNN's in Encog. Advanced Algorithms for Neural Networks: A C++ Sourcebook by Timothy Masters, PhD (http://www.timothymasters.info/) John Wiley & Sons Inc (Computers); April 3, 1995, ISBN: 0471105880
    See Also:
    Serialized Form
    • Constructor Detail

      • BasicPNN

        public BasicPNN(PNNKernelType kernel,        PNNOutputMode outmodel,        int inputCount,        int outputCount)
        Construct a BasicPNN network.
        Parameters:
        kernel - The kernel to use.
        outmodel - The output model for this network.
        inputCount - The number of inputs in this network.
        outputCount - The number of outputs in this network.
    • Method Detail

      • compute

        public final MLData compute(MLData input)
        Compute the output from this network.
        Specified by:
        compute in interface MLRegression
        Specified by:
        compute in class AbstractPNN
        Parameters:
        input - The input to the network.
        Returns:
        The output from the network.
      • getCountPer

        public final int[] getCountPer()
        Returns:
        the countPer
      • getPriors

        public final double[] getPriors()
        Returns:
        the priors
      • getSamples

        public final BasicMLDataSet getSamples()
        Returns:
        the samples
      • getSigma

        public final double[] getSigma()
        Returns:
        the sigma
      • setSamples

        public final void setSamples(BasicMLDataSet samples)
        Parameters:
        samples - the samples to set

SCaVis 2.0 © jWork.ORG