Documentation API of the 'jhplot.stat.Statistics' Java class
Statistics
jhplot.stat

Class Statistics

• `public class Statisticsextends Object`
A static class for statistical calculations.
• Constructor Summary

Constructors
Constructor and Description
`Statistics()`
• Method Summary

All Methods
Modifier and TypeMethod and Description
`static double[][]``correlation(double[][] v)`
Correlation
`static double[][]``correlation(double[][] v1, double[][] v2)`
Correlation coefficient, covariance(v1, v2) / Math.sqrt(variance(v1) * variance(v2)
`static double``correlation(double[] v1, double[] v2)`
Correlation coefficient, covariance(v1, v2) / Math.sqrt(variance(v1) * variance(v2)
`static double[][]``covariance(double[][] v)`
Covariance
`static double[][]``covariance(double[][] v1, double[][] v2)`
Covariance
`static double``covariance(double[] v1, double[] v2)`
Covariance
`void``doc()`
Show online documentation.
`static double``FProbability(double F, int df1, int df2)`
Computes probability of F-ratio.
`static double``gamma(double x)`
Returns the Gamma function of the argument.
`static double``incompleteBeta(double aa, double bb, double xx)`
Returns the Incomplete Beta Function evaluated from zero to xx.
`static double``incompleteBetaFraction1(double a, double b, double x)`
Continued fraction expansion #1 for incomplete beta integral.
`static double``incompleteBetaFraction2(double a, double b, double x)`
Continued fraction expansion #2 for incomplete beta integral.
`static double``lnGamma(double x)`
Returns natural logarithm of gamma function.
`static double``mean(double[] v)`
Get mean value
`static double[]``mean(double[][] v)`
Get mean
`static double``p1evl(double x, double[] coef, int N)`
Evaluates the given polynomial of degree N at x.
`static double``polevl(double x, double[] coef, int N)`
Evaluates the given polynomial of degree N at x.
`static double``powerSeries(double a, double b, double x)`
Power series for incomplete beta integral.
`static double``stddeviation(double[] v)`
Standard deviation
`static double[]``stddeviation(double[][] v)`
Standard deviation
`static double``stirlingFormula(double x)`
Returns the Gamma function computed by Stirling's formula.
`static double``variance(double[] v)`
Variance
`static double[]``variance(double[][] v)`
Variance
• Methods inherited from class java.lang.Object

`equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait`
• Constructor Detail

• Statistics

`public Statistics()`
• Method Detail

• mean

`public static double mean(double[] v)`
Get mean value
Parameters:
`v` - vector
• mean

`public static double[] mean(double[][] v)`
Get mean
Parameters:
`v` - 2D array
Returns:
• stddeviation

`public static double stddeviation(double[] v)`
Standard deviation
Parameters:
`v` - vector
Returns:
• variance

`public static double variance(double[] v)`
Variance
Parameters:
`v` -
Returns:
vector
• stddeviation

`public static double[] stddeviation(double[][] v)`
Standard deviation
Parameters:
`v` -
Returns:
• variance

`public static double[] variance(double[][] v)`
Variance
Parameters:
`v` - vector
Returns:
• covariance

`public static double covariance(double[] v1,                                double[] v2)`
Covariance
Parameters:
`v1` - first vector
`v2` - second vector
Returns:
• covariance

`public static double[][] covariance(double[][] v1,                                    double[][] v2)`
Covariance
Parameters:
`v1` - first 2D array
`v2` - second 2D array
Returns:
• covariance

`public static double[][] covariance(double[][] v)`
Covariance
Parameters:
`v` -
Returns:
• correlation

`public static double correlation(double[] v1,                                 double[] v2)`
Correlation coefficient, covariance(v1, v2) / Math.sqrt(variance(v1) * variance(v2)
Parameters:
`v1` - first vector
`v2` - second vector
Returns:
• correlation

`public static double[][] correlation(double[][] v1,                                     double[][] v2)`
Correlation coefficient, covariance(v1, v2) / Math.sqrt(variance(v1) * variance(v2)
Parameters:
`v1` - first vector
`v2` - second vector
Returns:
• correlation

`public static double[][] correlation(double[][] v)`
Correlation
Parameters:
`v` -
Returns:
• FProbability

`public static double FProbability(double F,                                  int df1,                                  int df2)`
Computes probability of F-ratio.
Parameters:
`F` - the F-ratio
`df1` - the first number of degrees of freedom
`df2` - the second number of degrees of freedom
Returns:
the probability of the F-ratio.
• incompleteBeta

`public static double incompleteBeta(double aa,                                    double bb,                                    double xx)`
Returns the Incomplete Beta Function evaluated from zero to xx.
Parameters:
`aa` - the alpha parameter of the beta distribution.
`bb` - the beta parameter of the beta distribution.
`xx` - the integration end point.
• powerSeries

`public static double powerSeries(double a,                                 double b,                                 double x)`
Power series for incomplete beta integral. Use when b*x is small and x not too close to 1.
• lnGamma

`public static double lnGamma(double x)`
Returns natural logarithm of gamma function.
Parameters:
`x` - the value
Returns:
natural logarithm of gamma function
• p1evl

`public static double p1evl(double x,                           double[] coef,                           int N)`
Evaluates the given polynomial of degree N at x. Evaluates polynomial when coefficient of N is 1.0. Otherwise same as polevl().
`                     2          N y  =  C  + C x + C x  +...+ C x        0    1     2          N  Coefficients are stored in reverse order:  coef[0] = C  , ..., coef[N] = C  .            N                   0 `
The function p1evl() assumes that coef[N] = 1.0 and is omitted from the array. Its calling arguments are otherwise the same as polevl().

In the interest of speed, there are no checks for out of bounds arithmetic.

Parameters:
`x` - argument to the polynomial.
`coef` - the coefficients of the polynomial.
`N` - the degree of the polynomial.
• gamma

`public static double gamma(double x)`
Returns the Gamma function of the argument.
• stirlingFormula

`public static double stirlingFormula(double x)`
Returns the Gamma function computed by Stirling's formula. The polynomial STIR is valid for 33 <= x <= 172.
• polevl

`public static double polevl(double x,                            double[] coef,                            int N)`
Evaluates the given polynomial of degree N at x.
`                     2          N y  =  C  + C x + C x  +...+ C x        0    1     2          N  Coefficients are stored in reverse order:  coef[0] = C  , ..., coef[N] = C  .            N                   0 `
In the interest of speed, there are no checks for out of bounds arithmetic.
Parameters:
`x` - argument to the polynomial.
`coef` - the coefficients of the polynomial.
`N` - the degree of the polynomial.
• incompleteBetaFraction1

`public static double incompleteBetaFraction1(double a,                                             double b,                                             double x)`
Continued fraction expansion #1 for incomplete beta integral.
• incompleteBetaFraction2

`public static double incompleteBetaFraction2(double a,                                             double b,                                             double x)`
Continued fraction expansion #2 for incomplete beta integral.
• doc

`public void doc()`
Show online documentation.

DMelt 1.2 © DataMelt by jWork.ORG

Statistics
jhplot.stat

Class Statistics

• `public class Statisticsextends Object`
A static class for statistical calculations.

Warning: You cannot see the full API documentation of this class since the access to the DatMelt documentation for third-party Java classes is denied. Guests can only view jhplot Java API. To view the complete description of this class and its methods, please request the full DataMelt membership.

If you are already a full member, please login to the DataMelt member area before visiting this documentation.