Documentation API of the 'jhplot.HNeuralNet' Java class
HNeuralNet
jhplot

Class HNeuralNet



  • public class HNeuralNetextends Object
    Neural Netwrork calculations. Based on Backpropagation.
    • Constructor Detail

      • HNeuralNet

        public HNeuralNet()
        Create a network net and set name for the network
        Parameters:
        name - name for the network
    • Method Detail

      • reset

        public void reset()
        Reset the weight matrix and the thresholds.
      • addFeedForwardLayer

        public void addFeedForwardLayer(int neuronCount)
        Construct this layer with a sigmoid threshold function. Use sigmoid for activation.
        Parameters:
        neuronCount - How many neurons in this layer
      • addFeedForwardLayerWithBias

        public void addFeedForwardLayerWithBias(int neuronCount)
        Construct this layer with a sigmoid threshold function. Use sigmoid for activation.
        Parameters:
        neuronCount - How many neurons in this layer
      • setData

        public void setData(double[][] input,                    double[][] ideal)
        Construct a data set from an input and idea array. Used for supervized training.
        Parameters:
        input - The input into the neural network for training.
        ideal - The ideal output for training.
      • setData

        public void setData(double[][] input)
        Construct a data set from an input
        Parameters:
        input - The input into the neural network for training.
      • setData

        public void setData(PND input,                    PND ideal)
        Set data for training.
        Parameters:
        input - input data set
        ideal - expected resul.
      • setData

        public void setData(PND input)
        Set data
        Parameters:
        input - input data set
      • standardize

        public PND standardize(PND input)
        Standardize each column. This means S(i)= (X(i) - mean) / std fot each column in PND;
        Parameters:
        input - PND
        Returns:
        new PND after standardize
      • predict

        public MLData predict(MLData input)
        Evaluate data using current NN
        Returns:
        data
      • predict

        public P0D predict(P0D input)
        Generate prediction for input data
        Parameters:
        input - input data for predictions
      • predict

        public PND predict(PND input)
        Generate predictions for all input data. Assumes that the predicted array has less then 3 dimensions.
        Parameters:
        input - input data for prediction
        Returns:
        data with predictions
      • trainBackpropagation

        public int trainBackpropagation(boolean isShow,                                int maxEpoch,                                double learnRate,                                double momentum,                                double errorMinEpoch)
        Training neural network.Construct a backpropagation trainer. Typical example: train(5000, 0.1, 0.25, 0.001);
        Parameters:
        isShow - Show learning on a pop-up plot
        maxEpoch - maximum number of epochs
        learnRate - The rate at which the weight matrix will be adjusted based on learning.
        momentum - The influence that previous iteration's training deltas will have on the current iteration.
        errorMinEpoch - min error for epoch.
        Returns:
        returns the epoch at which training was stopped.
      • save

        public String save(String file)
        Save current status of neural net.
        Parameters:
        file - File name
        Returns:
        what is done
      • read

        public int read(String file)
        Read a neural net from a file.
        Parameters:
        file - File name
        Returns:
        0 if it is OK. -1 if file not found; -2: if NN not found.
      • getNetwork

        public BasicNetwork getNetwork()
        Return neural net back.
        Returns:
        network
      • showNetwork

        public void showNetwork()
        Show a neural net in a frame.
      • showWeights

        public void showWeights()
        Show a neural net weights in a separate frame.
      • analyzeNetwork

        public AnalyzeNetwork analyzeNetwork()
        Analyse the current neural network.
        Returns:
        analyzer
      • editNetwork

        public BasicNetwork editNetwork()
        Edit a neural net in a frame
      • show

        public void show()
        Show Net in EncodeDocument.
      • getEpochError

        public ArrayList<Double> getEpochError()
        Returns errors for each epoch. If the max epoch number was set in the train() method. The array may have less entries if learning has reached the minimum error.
        Returns:
        arrays of errors for each epoch
      • doc

        public void doc()
        Show online documentation.

DMelt 1.2 © DataMelt by jWork.ORG

HNeuralNet
jhplot

Class HNeuralNet



  • public class HNeuralNetextends Object
    Neural Netwrork calculations. Based on Backpropagation.

Warning: You cannot see the full API documentation of this class since the access to the DatMelt documentation for third-party Java classes is denied. Guests can only view jhplot Java API. To view the complete description of this class and its methods, please request the full DataMelt membership.

If you are already a full member, please login to the DataMelt member area before visiting this documentation.