Hep3Matrix
hephysics.vec

Class Hep3Matrix

    • Constructor Detail

      • Hep3Matrix

        public Hep3Matrix(int nRows,          int nCols)
      • Hep3Matrix

        public Hep3Matrix(double[][] data)
        Creates a new instance of BasicMatrix
      • Hep3Matrix

        public Hep3Matrix()
      • Hep3Matrix

        public Hep3Matrix(double e11,          double e12,          double e13,          double e21,          double e22,          double e23,          double e31,          double e32,          double e33)
    • Method Detail

      • e

        public double e(int row,       int column)
        Returns the (row, column) element
        Specified by:
        e in interface Matrix
        Overrides:
        e in class BasicMatrix
      • det

        public double det()
        Returns the determinent of the matrix.
        Overrides:
        det in class BasicMatrix
      • trace

        public double trace()
        Returns the trace of the matrix.
      • setPassiveEuler

        public void setPassiveEuler(double phi,                   double theta,                   double psi)
        Defines a rotation matrix via Euler angles. A "passive" rotation matrix rotates the coordinate system, an "active" one rotates the vector(body). The angles are defined for a right handed coordinate system. They are defined by counterclockwise rotations about an axis by the right hand rule, ie, looking down the axis in the negative direction the transvers axes are seen to rotate counterclockwise. To define passive(active) angles first rotate the coordinates(body) about the z-axis by phi, then about the new x-axis by theta then about the new z-axis by psi. Angles in radians.
      • setActiveEuler

        public void setActiveEuler(double phi,                  double theta,                  double psi)
        Defines a rotation matrix via Euler angles. A "passive" rotation matrix rotates the coordinate system, an "active" one rotates the vector(body). The angles are defined for a right handed coordinate system. They are defined by counterclockwise rotations about an axis by the right hand rule, ie, looking down the axis in the negative direction the transvers axes are seen to rotate counterclockwise. To define passive(active) angles first rotate the coordinates(body) about the z-axis by phi, then about the new x-axis by theta then about the new z-axis by psi. Angles in radians.

SCaVis 1.7 © jWork.org