Interface Summary Interface Description MultiVarPowerSeriesMap<C extends RingElem<C>> Multivariate power series map interface.TaylorFunction<C extends RingElem<C>> Interface for functions capable for Taylor series expansion.UnivPowerSeriesMap<C extends RingElem<C>> Univariate power series map interface.Class Summary Class Description Coefficients<C extends RingElem<C>> Abstract class for generating functions for coefficients of power series.Examples Examples for univariate power series implementations.ExamplesMulti Examples for multivariate power series implementations.ExpVectorIterable Iterable for ExpVector, using total degree enumeration.MultiVarCoefficients<C extends RingElem<C>> Abstract class for generating functions for coefficients of multivariate power series.MultiVarPowerSeries<C extends RingElem<C>> Multivariate power series implementation.MultiVarPowerSeriesRing<C extends RingElem<C>> Multivariate power series ring implementation.OrderedPairlist<C extends RingElem<C>> Pair list management.Pair<C extends RingElem<C>> Serializable subclass to hold pairs of power series.PolynomialTaylorFunction<C extends RingElem<C>> Polynomial functions capable for Taylor series expansion.ReductionSeq<C extends RingElem<C>> Multivariate power series reduction sequential use algorithm.StandardBaseSeq<C extends RingElem<C>> Standard Base sequential algorithm.TaylorFunctionAdapter<C extends RingElem<C>> Adapter for functions capable for Taylor series expansion.UnivPowerSeries<C extends RingElem<C>> Univariate power series implementation.UnivPowerSeriesRing<C extends RingElem<C>> Univariate power series ring implementation.

## Package edu.jas.ps Description

# Generic coefficients power series package.

This package contains classes for univariate and multivariate power series arithmetic in classes `UnivPowerSeries`

, `UnivPowerSeriesRing`

, `MultiVarPowerSeries`

and `MultiVarPowerSeriesRing`

over coefficient rings which implement the `RingElem`

interface. It contains also classes for reduction (with Mora's tangent cone algorithm) and standard base computations. Currently the term order is fixed to the order defined by the iterator over exponent vectors `ExpVectorIterator`

.

Heinz Kredel

Last modified: Sat Sep 18 14:15:26 CEST 2010

$Id$

**SCaVis 2.1 © jWork.ORG**