GroebnerBaseFGLM
edu.jas.gbufd

Class GroebnerBaseFGLM<C extends GcdRingElem<C>>

    • Constructor Detail

      • GroebnerBaseFGLM

        public GroebnerBaseFGLM()
        Constructor.
      • GroebnerBaseFGLM

        public GroebnerBaseFGLM(Reduction<C> red)
        Constructor.
        Parameters:
        red - Reduction engine
      • GroebnerBaseFGLM

        public GroebnerBaseFGLM(Reduction<C> red,                PairList<C> pl)
        Constructor.
        Parameters:
        red - Reduction engine
        pl - pair selection strategy
      • GroebnerBaseFGLM

        public GroebnerBaseFGLM(Reduction<C> red,                PairList<C> pl,                GroebnerBaseAbstract<C> gb)
        Constructor.
        Parameters:
        red - Reduction engine
        pl - pair selection strategy
        gb - backing GB algorithm.
      • GroebnerBaseFGLM

        public GroebnerBaseFGLM(GroebnerBaseAbstract<C> gb)
        Constructor.
        Parameters:
        gb - backing GB algorithm.
    • Method Detail

      • GB

        public List<GenPolynomial<C>> GB(int modv,                        List<GenPolynomial<C>> F)
        Groebner base using FGLM algorithm.
        Parameters:
        modv - module variable number.
        F - polynomial list.
        Returns:
        GB(F) a inv lex term order Groebner base of F.
      • convGroebnerToLex

        public List<GenPolynomial<C>> convGroebnerToLex(List<GenPolynomial<C>> groebnerBasis)
        Algorithm CONVGROEBNER: Converts Groebner bases w.r.t. total degree termorder into Groebner base w.r.t to inverse lexicographical term order
        Returns:
        Groebner base w.r.t to inverse lexicographical term order
      • lMinterm

        public GenPolynomial<C> lMinterm(List<GenPolynomial<C>> G,                        GenPolynomial<C> t)
        Algorithm lMinterm: MINTERM algorithm for inverse lexicographical term order.
        Parameters:
        t - Term
        G - Groebner basis
        Returns:
        Term that specifies condition (D) or null (Condition (D) in "A computational approach to commutative algebra", Becker, Weispfenning, Kredel, 1993, p. 427)

SCaVis 2.2 © jWork.ORG