MightyStaticBin1D
cern.hep.aida.bin

Class MightyStaticBin1D

  • All Implemented Interfaces:
    DoubleBufferConsumer, Serializable, Cloneable
    Direct Known Subclasses:
    QuantileBin1D


    public class MightyStaticBin1Dextends StaticBin1D
    Static and the same as its superclass, except that it can do more: Additionally computes moments of arbitrary integer order, harmonic mean, geometric mean, etc. Constructors need to be told what functionality is required for the given use case. Only maintains aggregate measures (incrementally) - the added elements themselves are not kept.
    See Also:
    Serialized Form
    • Constructor Detail

      • MightyStaticBin1D

        public MightyStaticBin1D()
        Constructs and returns an empty bin with limited functionality but good performance; equivalent to MightyStaticBin1D(false,false,4).
      • MightyStaticBin1D

        public MightyStaticBin1D(boolean hasSumOfLogarithms,                 boolean hasSumOfInversions,                 int maxOrderForSumOfPowers)
        Constructs and returns an empty bin with the given capabilities.
        Parameters:
        hasSumOfLogarithms - Tells whether sumOfLogarithms() can return meaningful results. Set this parameter to false if measures of sum of logarithms, geometric mean and product are not required.

        hasSumOfInversions - Tells whether sumOfInversions() can return meaningful results. Set this parameter to false if measures of sum of inversions, harmonic mean and sumOfPowers(-1) are not required.

        maxOrderForSumOfPowers - The maximum order k for which sumOfPowers(int) can return meaningful results. Set this parameter to at least 3 if the skew is required, to at least 4 if the kurtosis is required. In general, if moments are required set this parameter at least as large as the largest required moment. This method always substitutes Math.max(2,maxOrderForSumOfPowers) for the parameter passed in. Thus, sumOfPowers(0..2) always returns meaningful results.
        See Also:
        hasSumOfPowers(int), moment(int,double)
    • Method Detail

      • addAllOfFromTo

        public void addAllOfFromTo(DoubleArrayList list,                  int from,                  int to)
        Adds the part of the specified list between indexes from (inclusive) and to (inclusive) to the receiver.
        Overrides:
        addAllOfFromTo in class StaticBin1D
        Parameters:
        list - the list of which elements shall be added.
        from - the index of the first element to be added (inclusive).
        to - the index of the last element to be added (inclusive).
        Throws:
        IndexOutOfBoundsException - if list.size()>0 && (from<0 || from>to || to>=list.size()).
      • clone

        public Object clone()
        Returns a deep copy of the receiver.
        Overrides:
        clone in class PersistentObject
        Returns:
        a deep copy of the receiver.
      • compareWith

        public String compareWith(AbstractBin1D other)
        Computes the deviations from the receiver's measures to another bin's measures.
        Overrides:
        compareWith in class AbstractBin1D
        Parameters:
        other - the other bin to compare with
        Returns:
        a summary of the deviations.
      • geometricMean

        public double geometricMean()
        Returns the geometric mean, which is Product( x[i] )1.0/size(). This method tries to avoid overflows at the expense of an equivalent but somewhat inefficient definition: geoMean = exp( Sum( Log(x[i]) ) / size()). Note that for a geometric mean to be meaningful, the minimum of the data sequence must not be less or equal to zero.
        Returns:
        the geometric mean; Double.NaN if !hasSumOfLogarithms().
      • getMaxOrderForSumOfPowers

        public int getMaxOrderForSumOfPowers()
        Returns the maximum order k for which sums of powers are retrievable, as specified upon instance construction.
        See Also:
        hasSumOfPowers(int), sumOfPowers(int)
      • getMinOrderForSumOfPowers

        public int getMinOrderForSumOfPowers()
        Returns the minimum order k for which sums of powers are retrievable, as specified upon instance construction.
        See Also:
        hasSumOfPowers(int), sumOfPowers(int)
      • harmonicMean

        public double harmonicMean()
        Returns the harmonic mean, which is size() / Sum( 1/x[i] ). Remember: If the receiver contains at least one element of 0.0, the harmonic mean is 0.0.
        Returns:
        the harmonic mean; Double.NaN if !hasSumOfInversions().
        See Also:
        hasSumOfInversions()
      • hasSumOfInversions

        public boolean hasSumOfInversions()
        Returns whether sumOfInversions() can return meaningful results.
        Returns:
        false if the bin was constructed with insufficient parametrization, true otherwise. See the constructors for proper parametrization.
      • hasSumOfLogarithms

        public boolean hasSumOfLogarithms()
        Tells whether sumOfLogarithms() can return meaningful results.
        Returns:
        false if the bin was constructed with insufficient parametrization, true otherwise. See the constructors for proper parametrization.
      • hasSumOfPowers

        public boolean hasSumOfPowers(int k)
        Tells whether sumOfPowers(k) can return meaningful results. Defined as hasSumOfPowers(k) <==> getMinOrderForSumOfPowers() <= k && k <= getMaxOrderForSumOfPowers(). A return value of true implies that hasSumOfPowers(k-1) .. hasSumOfPowers(0) will also return true. See the constructors for proper parametrization.

        Details: hasSumOfPowers(0..2) will always yield true. hasSumOfPowers(-1) <==> hasSumOfInversions().

        Returns:
        false if the bin was constructed with insufficient parametrization, true otherwise.
        See Also:
        getMinOrderForSumOfPowers(), getMaxOrderForSumOfPowers()
      • kurtosis

        public double kurtosis()
        Returns the kurtosis (aka excess), which is -3 + moment(4,mean()) / standardDeviation()4.
        Returns:
        the kurtosis; Double.NaN if !hasSumOfPowers(4).
        See Also:
        hasSumOfPowers(int)
      • moment

        public double moment(int k,            double c)
        Returns the moment of k-th order with value c, which is Sum( (x[i]-c)k ) / size().
        Parameters:
        k - the order; must be greater than or equal to zero.
        c - any number.
        Returns:
        Double.NaN if !hasSumOfPower(k).
        Throws:
        IllegalArgumentException - if k < 0.
      • product

        public double product()
        Returns the product, which is Prod( x[i] ). In other words: x[0]*x[1]*...*x[size()-1].
        Returns:
        the product; Double.NaN if !hasSumOfLogarithms().
        See Also:
        hasSumOfLogarithms()
      • skew

        public double skew()
        Returns the skew, which is moment(3,mean()) / standardDeviation()3.
        Returns:
        the skew; Double.NaN if !hasSumOfPowers(3).
        See Also:
        hasSumOfPowers(int)
      • sumOfInversions

        public double sumOfInversions()
        Returns the sum of inversions, which is Sum( 1 / x[i] ).
        Returns:
        the sum of inversions; Double.NaN if !hasSumOfInversions().
        See Also:
        hasSumOfInversions()
      • sumOfLogarithms

        public double sumOfLogarithms()
        Returns the sum of logarithms, which is Sum( Log(x[i]) ).
        Returns:
        the sum of logarithms; Double.NaN if !hasSumOfLogarithms().
        See Also:
        hasSumOfLogarithms()
      • sumOfPowers

        public double sumOfPowers(int k)
        Returns the k-th order sum of powers, which is Sum( x[i]k ).
        Parameters:
        k - the order of the powers.
        Returns:
        the sum of powers; Double.NaN if !hasSumOfPowers(k).
        See Also:
        hasSumOfPowers(int)

SCaVis 1.8 © jWork.org