WrapperFloatMatrix2D
cern.colt.matrix.tfloat.impl

Class WrapperFloatMatrix2D

    • Constructor Detail

      • WrapperFloatMatrix2D

        public WrapperFloatMatrix2D(FloatMatrix2D newContent)
    • Method Detail

      • assign

        public FloatMatrix2D assign(float[] values)
        Description copied from class: FloatMatrix2D
        Sets all cells to the state specified by values. values is required to have the form values[row*column] and elements have to be stored in a row-wise order.

        The values are copied. So subsequent changes in values are not reflected in the matrix, and vice-versa.

        Overrides:
        assign in class FloatMatrix2D
        Parameters:
        values - the values to be filled into the cells.
        Returns:
        this (for convenience only).
      • assign

        public FloatMatrix2D assign(FloatMatrix2D y,                   FloatFloatFunction function)
        Description copied from class: FloatMatrix2D
        Assigns the result of a function to each cell; x[row,col] = function(x[row,col],y[row,col]).

        Example:

                 // assign x[row,col] = x[row,col]<sup>y[row,col]</sup>         m1 = 2 x 2 matrix          0 1          2 3          m2 = 2 x 2 matrix          0 2          4 6          m1.assign(m2, cern.jet.math.Functions.pow);         -->         m1 == 2 x 2 matrix         1   1          16 729  
        For further examples, see the package doc.
        Overrides:
        assign in class FloatMatrix2D
        Parameters:
        y - the secondary matrix to operate on.
        function - a function object taking as first argument the current cell's value of this, and as second argument the current cell's value of y,
        Returns:
        this (for convenience only).
        See Also:
        FloatFunctions
      • getQuick

        public float getQuick(int row,             int column)
        Description copied from class: FloatMatrix2D
        Returns the matrix cell value at coordinate [row,column].

        Provided with invalid parameters this method may return invalid objects without throwing any exception. You should only use this method when you are absolutely sure that the coordinate is within bounds. Precondition (unchecked): 0 <= column < columns() && 0 <= row < rows().

        Specified by:
        getQuick in class FloatMatrix2D
        Parameters:
        row - the index of the row-coordinate.
        column - the index of the column-coordinate.
        Returns:
        the value at the specified coordinate.
      • equals

        public boolean equals(float value)
        Description copied from class: FloatMatrix2D
        Returns whether all cells are equal to the given value.
        Overrides:
        equals in class FloatMatrix2D
        Parameters:
        value - the value to test against.
        Returns:
        true if all cells are equal to the given value, false otherwise.
      • equals

        public boolean equals(Object obj)
        Description copied from class: FloatMatrix2D
        Compares this object against the specified object. The result is true if and only if the argument is not null and is at least a FloatMatrix2D object that has the same number of columns and rows as the receiver and has exactly the same values at the same coordinates.
        Overrides:
        equals in class FloatMatrix2D
        Parameters:
        obj - the object to compare with.
        Returns:
        true if the objects are the same; false otherwise.
      • like

        public FloatMatrix2D like(int rows,                 int columns)
        Description copied from class: FloatMatrix2D
        Construct and returns a new empty matrix of the same dynamic type as the receiver, having the specified number of rows and columns. For example, if the receiver is an instance of type DenseFloatMatrix2D the new matrix must also be of type DenseFloatMatrix2D, if the receiver is an instance of type SparseFloatMatrix2D the new matrix must also be of type SparseFloatMatrix2D, etc. In general, the new matrix should have internal parametrization as similar as possible.
        Specified by:
        like in class FloatMatrix2D
        Parameters:
        rows - the number of rows the matrix shall have.
        columns - the number of columns the matrix shall have.
        Returns:
        a new empty matrix of the same dynamic type.
      • like1D

        public FloatMatrix1D like1D(int size)
        Description copied from class: FloatMatrix2D
        Construct and returns a new 1-d matrix of the corresponding dynamic type, entirelly independent of the receiver. For example, if the receiver is an instance of type DenseFloatMatrix2D the new matrix must be of type DenseFloatMatrix1D, if the receiver is an instance of type SparseFloatMatrix2D the new matrix must be of type SparseFloatMatrix1D, etc.
        Specified by:
        like1D in class FloatMatrix2D
        Parameters:
        size - the number of cells the matrix shall have.
        Returns:
        a new matrix of the corresponding dynamic type.
      • dct2

        public void dct2(boolean scale)
        Computes the 2D discrete cosine transform (DCT-II) of this matrix.
        Parameters:
        scale - if true then scaling is performed
      • dctColumns

        public void dctColumns(boolean scale)
        Computes the discrete cosine transform (DCT-II) of each column of this matrix.
        Parameters:
        scale - if true then scaling is performed
      • dctRows

        public void dctRows(boolean scale)
        Computes the discrete cosine transform (DCT-II) of each row of this matrix.
        Parameters:
        scale - if true then scaling is performed
      • dst2

        public void dst2(boolean scale)
        Computes the 2D discrete sine transform (DST-II) of this matrix.
        Parameters:
        scale - if true then scaling is performed
      • dstColumns

        public void dstColumns(boolean scale)
        Computes the discrete sine transform (DST-II) of each column of this matrix.
        Parameters:
        scale - if true then scaling is performed
      • dstRows

        public void dstRows(boolean scale)
        Computes the discrete sine transform (DST-II) of each row of this matrix.
        Parameters:
        scale - if true then scaling is performed
      • dht2

        public void dht2()
        Computes the 2D discrete Hartley transform (DHT) of this matrix.
      • dhtColumns

        public void dhtColumns()
        Computes the discrete Hertley transform (DHT) of each column of this matrix.
      • dhtRows

        public void dhtRows()
        Computes the discrete Hertley transform (DHT) of each row of this matrix.
      • fft2

        public void fft2()
        Computes the 2D discrete Fourier transform (DFT) of this matrix. The physical layout of the output data is as follows:
         this[k1][2*k2] = Re[k1][k2] = Re[rows-k1][columns-k2],  this[k1][2*k2+1] = Im[k1][k2] = -Im[rows-k1][columns-k2],        0<k1<rows, 0<k2<columns/2,  this[0][2*k2] = Re[0][k2] = Re[0][columns-k2],  this[0][2*k2+1] = Im[0][k2] = -Im[0][columns-k2],        0<k2<columns/2,  this[k1][0] = Re[k1][0] = Re[rows-k1][0],  this[k1][1] = Im[k1][0] = -Im[rows-k1][0],  this[rows-k1][1] = Re[k1][columns/2] = Re[rows-k1][columns/2],  this[rows-k1][0] = -Im[k1][columns/2] = Im[rows-k1][columns/2],        0<k1<rows/2,  this[0][0] = Re[0][0],  this[0][1] = Re[0][columns/2],  this[rows/2][0] = Re[rows/2][0],  this[rows/2][1] = Re[rows/2][columns/2] 
        This method computes only half of the elements of the real transform. The other half satisfies the symmetry condition. If you want the full real forward transform, use getFft2. To get back the original data, use ifft2.
        Throws:
        IllegalArgumentException - if the row size or the column size of this matrix is not a power of 2 number.
      • getFft2

        public DenseLargeFComplexMatrix2D getFft2()
        Returns new complex matrix which is the 2D discrete Fourier transform (DFT) of this matrix.
        Returns:
        the 2D discrete Fourier transform (DFT) of this matrix.
      • getIfft2

        public DenseLargeFComplexMatrix2D getIfft2(boolean scale)
        Returns new complex matrix which is the 2D inverse of the discrete Fourier transform (IDFT) of this matrix.
        Returns:
        the 2D inverse of the discrete Fourier transform (IDFT) of this matrix.
      • getFftColumns

        public DenseLargeFComplexMatrix2D getFftColumns()
        Returns new complex matrix which is the discrete Fourier transform (DFT) of each column of this matrix.
        Returns:
        the discrete Fourier transform (DFT) of each column of this matrix.
      • getFftRows

        public DenseLargeFComplexMatrix2D getFftRows()
        Returns new complex matrix which is the discrete Fourier transform (DFT) of each row of this matrix.
        Returns:
        the discrete Fourier transform (DFT) of each row of this matrix.
      • getIfftColumns

        public DenseLargeFComplexMatrix2D getIfftColumns(boolean scale)
        Returns new complex matrix which is the inverse of the discrete Fourier transform (IDFT) of each column of this matrix.
        Returns:
        the inverse of the discrete Fourier transform (IDFT) of each column of this matrix.
      • getIfftRows

        public DenseLargeFComplexMatrix2D getIfftRows(boolean scale)
        Returns new complex matrix which is the inverse of the discrete Fourier transform (IDFT) of each row of this matrix.
        Returns:
        the inverse of the discrete Fourier transform (IDFT) of each row of this matrix.
      • idct2

        public void idct2(boolean scale)
        Computes the 2D inverse of the discrete cosine transform (DCT-III) of this matrix.
        Parameters:
        scale - if true then scaling is performed
      • idctColumns

        public void idctColumns(boolean scale)
        Computes the inverse of the discrete cosine transform (DCT-III) of each column of this matrix.
        Parameters:
        scale - if true then scaling is performed
      • idctRows

        public void idctRows(boolean scale)
        Computes the inverse of the discrete cosine transform (DCT-III) of each row of this matrix.
        Parameters:
        scale - if true then scaling is performed
      • idst2

        public void idst2(boolean scale)
        Computes the 2D inverse of the discrete size transform (DST-III) of this matrix.
        Parameters:
        scale - if true then scaling is performed
      • idstColumns

        public void idstColumns(boolean scale)
        Computes the inverse of the discrete sine transform (DST-III) of each column of this matrix.
        Parameters:
        scale - if true then scaling is performed
      • idstRows

        public void idstRows(boolean scale)
        Computes the inverse of the discrete sine transform (DST-III) of each row of this matrix.
        Parameters:
        scale - if true then scaling is performed
      • idht2

        public void idht2(boolean scale)
        Computes the 2D inverse of the discrete Hartley transform (DHT) of this matrix.
        Parameters:
        scale - if true then scaling is performed
      • idhtColumns

        public void idhtColumns(boolean scale)
        Computes the inverse of the discrete Hartley transform (DHT) of each column of this matrix.
        Parameters:
        scale - if true then scaling is performed
      • idhtRows

        public void idhtRows(boolean scale)
        Computes the inverse of the discrete Hartley transform (DHT) of each row of this matrix.
        Parameters:
        scale - if true then scaling is performed
      • ifft2

        public void ifft2(boolean scale)
        Computes the 2D inverse of the discrete Fourier transform (IDFT) of this matrix. The physical layout of the input data has to be as follows:
         this[k1][2*k2] = Re[k1][k2] = Re[rows-k1][columns-k2],  this[k1][2*k2+1] = Im[k1][k2] = -Im[rows-k1][columns-k2],        0<k1<rows, 0<k2<columns/2,  this[0][2*k2] = Re[0][k2] = Re[0][columns-k2],  this[0][2*k2+1] = Im[0][k2] = -Im[0][columns-k2],        0<k2<columns/2,  this[k1][0] = Re[k1][0] = Re[rows-k1][0],  this[k1][1] = Im[k1][0] = -Im[rows-k1][0],  this[rows-k1][1] = Re[k1][columns/2] = Re[rows-k1][columns/2],  this[rows-k1][0] = -Im[k1][columns/2] = Im[rows-k1][columns/2],        0<k1<rows/2,  this[0][0] = Re[0][0],  this[0][1] = Re[0][columns/2],  this[rows/2][0] = Re[rows/2][0],  this[rows/2][1] = Re[rows/2][columns/2] 
        This method computes only half of the elements of the real transform. The other half satisfies the symmetry condition. If you want the full real inverse transform, use getIfft2.
        Parameters:
        scale - if true then scaling is performed
        Throws:
        IllegalArgumentException - if the row size or the column size of this matrix is not a power of 2 number.
      • setQuick

        public void setQuick(int row,            int column,            float value)
        Description copied from class: FloatMatrix2D
        Sets the matrix cell at coordinate [row,column] to the specified value.

        Provided with invalid parameters this method may access illegal indexes without throwing any exception. You should only use this method when you are absolutely sure that the coordinate is within bounds. Precondition (unchecked): 0 <= column < columns() && 0 <= row < rows().

        Specified by:
        setQuick in class FloatMatrix2D
        Parameters:
        row - the index of the row-coordinate.
        column - the index of the column-coordinate.
        value - the value to be filled into the specified cell.
      • vectorize

        public FloatMatrix1D vectorize()
        Description copied from class: FloatMatrix2D
        Returns a vector obtained by stacking the columns of the matrix on top of one another.
        Specified by:
        vectorize in class FloatMatrix2D
        Returns:
        a vector of columns of this matrix.
      • viewColumn

        public FloatMatrix1D viewColumn(int column)
        Description copied from class: FloatMatrix2D
        Constructs and returns a new slice view representing the rows of the given column. The returned view is backed by this matrix, so changes in the returned view are reflected in this matrix, and vice-versa. To obtain a slice view on subranges, construct a sub-ranging view ( viewPart(...)), then apply this method to the sub-range view.

        Example:

        2 x 3 matrix:
        1, 2, 3
        4, 5, 6
        viewColumn(0) ==> Matrix1D of size 2:
        1, 4
        Overrides:
        viewColumn in class FloatMatrix2D
        Parameters:
        column - the column to fix.
        Returns:
        a new slice view.
        See Also:
        FloatMatrix2D.viewRow(int)
      • viewColumnFlip

        public FloatMatrix2D viewColumnFlip()
        Description copied from class: FloatMatrix2D
        Constructs and returns a new flip view along the column axis. What used to be column 0 is now column columns()-1, ..., what used to be column columns()-1 is now column 0. The returned view is backed by this matrix, so changes in the returned view are reflected in this matrix, and vice-versa.

        Example:

        2 x 3 matrix:
        1, 2, 3
        4, 5, 6
        columnFlip ==> 2 x 3 matrix:
        3, 2, 1
        6, 5, 4
        columnFlip ==> 2 x 3 matrix:
        1, 2, 3
        4, 5, 6
        Overrides:
        viewColumnFlip in class FloatMatrix2D
        Returns:
        a new flip view.
        See Also:
        FloatMatrix2D.viewRowFlip()
      • viewDice

        public FloatMatrix2D viewDice()
        Description copied from class: FloatMatrix2D
        Constructs and returns a new dice (transposition) view; Swaps axes; example: 3 x 4 matrix --> 4 x 3 matrix. The view has both dimensions exchanged; what used to be columns become rows, what used to be rows become columns. In other words: view.get(row,column)==this.get(column,row). This is a zero-copy transposition, taking O(1), i.e. constant time. The returned view is backed by this matrix, so changes in the returned view are reflected in this matrix, and vice-versa. Use idioms like result = viewDice(A).copy() to generate an independent transposed matrix.

        Example:

        2 x 3 matrix:
        1, 2, 3
        4, 5, 6
        transpose ==> 3 x 2 matrix:
        1, 4
        2, 5
        3, 6
        transpose ==> 2 x 3 matrix:
        1, 2, 3
        4, 5, 6
        Overrides:
        viewDice in class FloatMatrix2D
        Returns:
        a new dice view.
      • viewPart

        public FloatMatrix2D viewPart(int row,                     int column,                     int height,                     int width)
        Description copied from class: FloatMatrix2D
        Constructs and returns a new sub-range view that is a height x width sub matrix starting at [row,column]. Operations on the returned view can only be applied to the restricted range. Any attempt to access coordinates not contained in the view will throw an IndexOutOfBoundsException.

        Note that the view is really just a range restriction: The returned matrix is backed by this matrix, so changes in the returned matrix are reflected in this matrix, and vice-versa.

        The view contains the cells from [row,column] to [row+height-1,column+width-1], all inclusive. and has view.rows() == height; view.columns() == width;. A view's legal coordinates are again zero based, as usual. In other words, legal coordinates of the view range from [0,0] to [view.rows()-1==height-1,view.columns()-1==width-1]. As usual, any attempt to access a cell at a coordinate column<0 || column>=view.columns() || row<0 || row>=view.rows() will throw an IndexOutOfBoundsException.

        Overrides:
        viewPart in class FloatMatrix2D
        Parameters:
        row - The index of the row-coordinate.
        column - The index of the column-coordinate.
        height - The height of the box.
        width - The width of the box.
        Returns:
        the new view.
      • viewRow

        public FloatMatrix1D viewRow(int row)
        Description copied from class: FloatMatrix2D
        Constructs and returns a new slice view representing the columns of the given row. The returned view is backed by this matrix, so changes in the returned view are reflected in this matrix, and vice-versa. To obtain a slice view on subranges, construct a sub-ranging view ( viewPart(...)), then apply this method to the sub-range view.

        Example:

        2 x 3 matrix:
        1, 2, 3
        4, 5, 6
        viewRow(0) ==> Matrix1D of size 3:
        1, 2, 3
        Overrides:
        viewRow in class FloatMatrix2D
        Parameters:
        row - the row to fix.
        Returns:
        a new slice view.
        See Also:
        FloatMatrix2D.viewColumn(int)
      • viewRowFlip

        public FloatMatrix2D viewRowFlip()
        Description copied from class: FloatMatrix2D
        Constructs and returns a new flip view along the row axis. What used to be row 0 is now row rows()-1, ..., what used to be row rows()-1 is now row 0. The returned view is backed by this matrix, so changes in the returned view are reflected in this matrix, and vice-versa.

        Example:

        2 x 3 matrix:
        1, 2, 3
        4, 5, 6
        rowFlip ==> 2 x 3 matrix:
        4, 5, 6
        1, 2, 3
        rowFlip ==> 2 x 3 matrix:
        1, 2, 3
        4, 5, 6
        Overrides:
        viewRowFlip in class FloatMatrix2D
        Returns:
        a new flip view.
        See Also:
        FloatMatrix2D.viewColumnFlip()
      • viewSelection

        public FloatMatrix2D viewSelection(int[] rowIndexes,                          int[] columnIndexes)
        Description copied from class: FloatMatrix2D
        Constructs and returns a new selection view that is a matrix holding the indicated cells. There holds view.rows() == rowIndexes.length, view.columns() == columnIndexes.length and view.get(i,j) == this.get(rowIndexes[i],columnIndexes[j]). Indexes can occur multiple times and can be in arbitrary order.

        Example:

                 this = 2 x 3 matrix:         1, 2, 3         4, 5, 6         rowIndexes     = (0,1)         columnIndexes  = (1,0,1,0)         -->         view = 2 x 4 matrix:         2, 1, 2, 1         5, 4, 5, 4  
        Note that modifying the index arguments after this call has returned has no effect on the view. The returned view is backed by this matrix, so changes in the returned view are reflected in this matrix, and vice-versa.

        To indicate "all" rows or "all columns", simply set the respective parameter

        Overrides:
        viewSelection in class FloatMatrix2D
        Parameters:
        rowIndexes - The rows of the cells that shall be visible in the new view. To indicate that all rows shall be visible, simply set this parameter to null.
        columnIndexes - The columns of the cells that shall be visible in the new view. To indicate that all columns shall be visible, simply set this parameter to null.
        Returns:
        the new view.
      • viewStrides

        public FloatMatrix2D viewStrides(int _rowStride,                        int _columnStride)
        Description copied from class: FloatMatrix2D
        Constructs and returns a new stride view which is a sub matrix consisting of every i-th cell. More specifically, the view has this.rows()/rowStride rows and this.columns()/columnStride columns holding cells this.get(i*rowStride,j*columnStride) for all i = 0..rows()/rowStride - 1, j = 0..columns()/columnStride - 1. The returned view is backed by this matrix, so changes in the returned view are reflected in this matrix, and vice-versa.
        Overrides:
        viewStrides in class FloatMatrix2D
        Parameters:
        _rowStride - the row step factor.
        _columnStride - the column step factor.
        Returns:
        a new view.

SCaVis 1.8 © jWork.org