FComplexFactory2D
cern.colt.matrix.tfcomplex

Class FComplexFactory2D

  • All Implemented Interfaces:
    Serializable, Cloneable


    public class FComplexFactory2Dextends PersistentObject
    Factory for convenient construction of 2-d matrices holding complex cells. Also provides convenient methods to compose (concatenate) and decompose (split) matrices from/to constituent blocks.

     

    Construction Use idioms like ComplexFactory2D.dense.make(4,4) to construct dense matrices, ComplexFactory2D.sparse.make(4,4) to construct sparse matrices.
    Construction with initial values Use other make methods to construct matrices with given initial values.
    Appending rows and columns Use methods appendColumns, appendRows and repeat to append rows and columns.
    General block matrices Use methods compose and decompose to work with general block matrices.
    Diagonal matrices Use methods diagonal(vector), diagonal(matrix) and identity to work with diagonal matrices.
    Diagonal block matrices Use method composeDiagonal to work with diagonal block matrices.
    Random Use methods random and sample to construct random matrices.

     

    If the factory is used frequently it might be useful to streamline the notation. For example by aliasing:

      ComplexFactory2D F = ComplexFactory2D.dense;  F.make(4,4);  F.random(4,4);  ... 
    See Also:
    Serialized Form
    • Field Detail

      • sparse

        public static final FComplexFactory2D sparse
        A factory producing sparse hash matrices.
    • Method Detail

      • appendColumns

        public FComplexMatrix2D appendColumns(FComplexMatrix2D A,                             FComplexMatrix2D B)
        C = A||B; Constructs a new matrix which is the column-wise concatenation of two other matrices.
                 0 1 2         3 4 5         appendColumns         6 7         8 9         -->         0 1 2 6 7          3 4 5 8 9  
      • compose

        public FComplexMatrix2D compose(FComplexMatrix2D[][] parts)
        Constructs a block matrix made from the given parts. The inverse to method decompose(FComplexMatrix2D[][], FComplexMatrix2D).

        All matrices of a given column within parts must have the same number of columns. All matrices of a given row within parts must have the same number of rows. Otherwise an IllegalArgumentException is thrown. Note that nulls within parts[row,col] are an exception to this rule: they are ignored. Cells are copied.

        Throws:
        IllegalArgumentException - subject to the conditions outlined above.
      • composeDiagonal

        public FComplexMatrix2D composeDiagonal(FComplexMatrix2D A,                               FComplexMatrix2D B)
        Constructs a diagonal block matrix from the given parts (the direct sum of two matrices). That is the concatenation
                 A 0         0 B  
        (The direct sum has A.rows()+B.rows() rows and A.columns()+B.columns() columns). Cells are copied.
        Returns:
        a new matrix which is the direct sum.
      • decompose

        public void decompose(FComplexMatrix2D[][] parts,             FComplexMatrix2D matrix)
        Splits a block matrix into its constituent blocks; Copies blocks of a matrix into the given parts. The inverse to method compose(FComplexMatrix2D[][]).

        All matrices of a given column within parts must have the same number of columns. All matrices of a given row within parts must have the same number of rows. Otherwise an IllegalArgumentException is thrown. Note that nulls within parts[row,col] are an exception to this rule: they are ignored. Cells are copied.

        Throws:
        IllegalArgumentException - subject to the conditions outlined above.
      • demo1

        public void demo1()
        Demonstrates usage of this class.
      • demo2

        public void demo2()
        Demonstrates usage of this class.
      • diagonal

        public FComplexMatrix2D diagonal(FComplexMatrix1D vector)
        Constructs a new diagonal matrix whose diagonal elements are the elements of vector. Cells values are copied. The new matrix is not a view.
        Returns:
        a new matrix.
      • diagonal

        public FComplexMatrix1D diagonal(FComplexMatrix2D A)
        Constructs a new vector consisting of the diagonal elements of A . Cells values are copied. The new vector is not a view.
        Parameters:
        A - the matrix, need not be square.
        Returns:
        a new vector.
      • identity

        public FComplexMatrix2D identity(int rowsAndColumns)
        Constructs an identity matrix (having ones on the diagonal and zeros elsewhere).
      • make

        public FComplexMatrix2D make(float[][] values)
        Constructs a matrix with the given cell values. values is required to have the form values[row][column] and have exactly the same number of columns in every row.

        The values are copied. So subsequent changes in values are not reflected in the matrix, and vice-versa.

        Parameters:
        values - The values to be filled into the new matrix.
        Throws:
        IllegalArgumentException - if for any 1 <= row < values.length: values[row].length != values[row-1].length .
      • make

        public FComplexMatrix2D make(int rows,                    int columns)
        Constructs a matrix with the given shape, each cell initialized with zero.
      • make

        public FComplexMatrix2D make(int rows,                    int columns,                    float[] initialValue)
        Constructs a matrix with the given shape, each cell initialized with the given value.
      • random

        public FComplexMatrix2D random(int rows,                      int columns)
        Constructs a matrix with uniformly distributed values in (0,1) (exclusive).
      • repeat

        public FComplexMatrix2D repeat(FComplexMatrix2D A,                      int rowRepeat,                      int columnRepeat)
        C = A||A||..||A; Constructs a new matrix which is duplicated both along the row and column dimension.
      • sample

        public FComplexMatrix2D sample(int rows,                      int columns,                      float[] value,                      float nonZeroFraction)
        Constructs a randomly sampled matrix with the given shape. Randomly picks exactly Math.round(rows*columns*nonZeroFraction) cells and initializes them to value, all the rest will be initialized to zero. Note that this is not the same as setting each cell with probability nonZeroFraction to value. Note: The random seed is a constant.
        Throws:
        IllegalArgumentException - if nonZeroFraction < 0 || nonZeroFraction > 1.
        See Also:
        FloatRandomSampler
      • sample

        public FComplexMatrix2D sample(FComplexMatrix2D matrix,                      float[] value,                      float nonZeroFraction)
        Modifies the given matrix to be a randomly sampled matrix. Randomly picks exactly Math.round(rows*columns*nonZeroFraction) cells and initializes them to value, all the rest will be initialized to zero. Note that this is not the same as setting each cell with probability nonZeroFraction to value. Note: The random seed is a constant.
        Throws:
        IllegalArgumentException - if nonZeroFraction < 0 || nonZeroFraction > 1.
        See Also:
        FloatRandomSampler

SCaVis 1.8 © jWork.org