You are a guest. Restricted access. Read more

# Built-in functions

There are more than 250 built-in functions included with jMathLab. They are implemented as a external MatLab functions (with the extension .m) or as a Java classes. You can look at them using the command path. Look at the reference manual Reference manual.

Here is a simple example. Compute the inverse cosine of an angle:

`x=acos(0.4); printf('%f',x)`

which calls “acos” function. One can get help for this function as:

`help("acos")`

The most common implemented functions are the square root (sqrt(x)), the trigonometric functions (sin(x), cos(x), tan(x)) and inverses (atan(x), atan2(y,x)), and the hyperbolic functions (exp(x), log(x)). A large number of additional functions are available, see the list in chapter 4. Some functions are specific to integers, and also work with arbitrary large numbers: primes(Z) expands Z into prime factors, factorial(Z) calculates the factorial function. Modular division is provided by divide and treated later in the context of polynomials.

`a=log(sqrt(854)); printf('%f',a)         % natural logarithm`

Try also these examples:

```a=0.5*log(854); printf('%f\n',a)
a=float(sin(pi/2));printf('%f\n',a)          % argument in radian
a=gammaln(1234);  printf('%f\n',a)           % log( gamma( x ) )
a=primes(1000000000000000001);  printf('%f\n',a)
a=factorial(35); printf('%f\n',a)```

Let us calculate factorial. We will use “rat” and therefore we specify syms to use it here:

`a=factorial(rat(8));   printf('%f',a)    % to make it exact.`

## Standard functions

Here is the table with the rebuild functions for scalar values:

Name(Arguments) Function
float($var$) $var$ as floating point number
rat($var$) $var$ as exact number
realpart($var$) realpart of $var$
imagpart($var$) imaginary part of $var$
abs($var$) absolute value of $var$
sign($var$) sign of $var$
conj($var$) $var$ conjugate complex
angle($var$) angle of $var$
cfs($var$) [$var_T$]) continued fraction expansion of $var$ with accuracy $var_T$
primes(VAR) VAR decomposed into primes

## Built-in unctions

The functions can accept either a value (number), a vector of numbers, or symbolic value. In case of vectors, a function returns a vector. See [jmathlab:vectors]].

Name(Arguments) Function
sqrt($var$) squareroot
exp($var$) exponential
log($var$) natural logarithm
sinh($var$) hyperbolic sine
cosh($var$) hyperbolic cosine
asinh($var$) hyperbolic areasine
acosh($var$) hyperbolic areacosine
sech($var$) hyperbolic secans
csch($var$) hyperbolic cosecans
asech($var$) hyperbolic areasecans
acsch($var$) hyperbolic areacosecans
sin($var$) sine (radian)
cos($var$) cosine (radian)
tan($var$) tangens (radian)
asin($var$) arcsine (radian)
acos($var$) arccosine (radian)
atan($var$) arctangens (radian)
atan2($var_1$, $var_2$) arctangens (radian)
sec($var$) secans (radian)
csc($var$) cosecans (radian)
asec($var$) arcsecans (radian)
acsc($var$) arccosecans (radian)
factorial(N) factorial $N!$
nchoosek(N,K) binomial coefficient $N \choose K$

## Special functions

See the reference reference API

Name(Arguments) Function
erf($var$) error function
inverf($var$) inverse error function
gamma($var$) gamma function
gammaln($var$) logarithm of gamma function
beta($var$) beta function
betaln($var$) logarithm of beta function
j0($var$) Bessel function of the first kind of order 0

as before, the functions can accept values and vectors.

jmathlab/functions/builtin.txt · Last modified: 2013/04/14 16:52 (external edit)