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Artificial Neural Networks (ANN) in HEP
Extensively used in HEP in the last ~25 years

“feature space”

● Different studies require different feature space
● Ambiguous, reproducibility issues, time consuming   

background

signal

Better separation of signal and 
background in ANN output space

Can we find a “standard” feature space which is 
representative of many signatures used in BSM searches?
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Desirable requirements for ML feature space

 Fixed size arrays
 Dimensionless
 Lorentz invariant
 Fixed range of values
 Single and 2-particle densities
 Small correlations between variables
 Image like. Cells connected by proximity 

due to a well-defined hierarchy
 Easy to visualize for humans

NOT GOOD for our goal

event 1
event 2
event 3

...
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Rapidity-mass matrix (RMM)

 Rapidity difference: h(i,j)  ~ cosh ( y
j 
 - y

i
) - 1

 Invariant masses of 
pairs m(i,j)/E

CM

Transverse energies of 
leading  objects and 
energy  imbalances

 Missing energy and missing 
transverse massesLorenz factors

 Dimensionless, Lorentz invariant (1st column are Lorentz factors themselves)
  Single and two-particle densities for each identified jet/objects

– Covers many aspects of invariant masses, forward physics, DM searches etc.
 Cells are almost independent for SM processes (*) 
 Re-scaling and normalization by construction
 Fixed sizes with well-defined mapping to input nodes → “Natural language” for ANN
 Cells connected by proximity  → good for visualization

https://arxiv.org/abs/1805.11650

https://arxiv.org/abs/1805.11650
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Example: Two PYTHIA8 events with tt

 t t → Wb Wb → e nu b μ nu b  t t → Wb Wb → 6 jets

Full version of RMM 
contain j4, j5, j6 and b-jets

Cell with MET, μ and e leptons activated Many jets, no  MET and leptons

Invariant mass 
of W  (mjj/Ecm)

Each cell maps to an input neuron:  Use ANN for image identification from leading 
industries (or even simple backpropogation or BDT) 
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Average RMM for PYTHIA8:
● Multijet QCD
● SM Higgs production
● Top production
● H+t production

All allowed decays of W/H/t
Averaged over 50k events 
(for each process) 

 

Considered: 
- jets, mu, e, photons
- up to 3 objects

● tt and H+t are similar
● Apply RMM to identify H+t

large MET Higgs mass (γγ)Muons

https://arxiv.org/abs/1805.11650Visualization of the RMM  feature space

https://arxiv.org/abs/1805.11650
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Using RMM for Charged Higgs searches

120 nodes

169 nodes

output: 0 (tt) or 1 (H+) 

● Use 10k events with tt, and 10k with H+
● Assume 600 GeV mass for H+
● Create cross validation sample for ANN
● Stop training when MSE < than for cross validated ANN
● Compare M(jj)  (RMM cell (2,1)) for H+ and top processes 

before after applying cut > 0.8 on output
● Disable cell (2,1) during training (avoid Mjj biases!) 

10k Pythia8 
events used to 
create 10k 
RMM (13x13) 
for H+ and ttbar 
processes
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Separation of H+ from tt background before and after ANN

● H+ mass at 600 GeV. Look at invariant mass of 2 leading jets ((2,1) cell)
● ANN with RMM inputs increases the  S/B by a factor 3. 

● Signal efficiency reduced by 30%
● Small shift for tt  (may require better tuning of disabled RMM links)

Original MC After applying 
ANN with RMM 
using cut >0.8 

on output
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RMM for general event identification problem

Average RMM 
for 50k events

Multi-jet QCD Higgs productions (all decays)

 RMM  includes all single & two-particle  (jet)  densities 
 No “handpicking” input variables for every topology/decay
 Good choice for general event classifiers?
Example: 
 5 processes: (1) SM QCD (2) Higgs (3) H+ (4) ttbar (5) Double bosons
 Create RMM using Np=7 and 6 objects using b-jets

H→ γγ

H→ bb
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ANN training using RMM as input

1296 nodes

200 nodes

5 nodes

Backpropogation NN with Signoid 
function, 5 outputs for each process  
(0-1 values)

Well trained after 200 epochs:
Mean Squared Error (MSE) 
decreases from 0.8 to 0.07
(~ 1h training on a desktop for 200k RMM)

H+
SM higgs
ttbar
QCD
Double bosons

RMM 36x36

Wide and shallow ANN for sparse 
input RMM data
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Result of ANN training using RMM

Good event separation of 
signal events (black lines) 
from  other processes

Purity of event classification 
is 80%-90% assuming 0.8 
cut on output nodes
(see backup slide 22) 
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Challenging case: QCD dijets

Separate gg from qg final states (dijets) → Distributions are nearly identical.
Presence of g instead of q leads to broader jets and changes in jet kinematics / shape

Well-known difference: Number of jet constituents 
is larger for gluon jets than for quark jets due to 
difference in color factors (C

A
 =3 vs  C

F
 = 3/4)

But there are many other distributions that can be 
used for ANN. How to choose them?

Use hand-crafted 
variables using 
Pick-and-Use approach?
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RMM for gg and qg events (example)

gg process compared to qg has:
● softer pT
● more jets 
● reduced photon rate 
..

photons

Average RMM  
for 100k events
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Two approaches for ML:

S
ta

nd
ar

d 
R

M
M

 3
6x

36

Traditional PaU
 handcrafted input variables (7 nodes)
 hidden layer (5 nodes)
 output with 1 (gg) or 0 (qg)

RMM
 RMM matrix as input (36x36+2)
 hidden layer (200 nodes)
 output with 1 (gg) or 0 (qg)

1 (gg)
0 (qg)

1 (gg)
0 (qg)

Alternatively:  Boosted Decision tree (BDT) using PaU and RMM
                       100 trees, depth 7,  stochastic gradient (arXiv:1609.06119)

7 
ha

nd
cr

af
te

d 
in

pu
ts

gg and qg separation: PaU vs standard RMM
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gg and qg separation: PaU vs standard RMM

Handcrafted feature space Standard RMM transformation

● ANN output space shows separation of gg from qg
● RMM over-performs hand-crafted “pick-and-use” (PaU) method with 7 inputs

 RMM has separation purity 68% vs 65% for PaU assuming  ANN output cut 0.5
● BDT instead of backpropogation confirms this conclusion
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 RMM is well suited for general event classification problems due 
comprehensive (nearly independent) single and two-particle densities
– Works even for simplest ANN/BDT
– Requires a wide input if no pruning of RMM input is done

 Same RMM transformation can be plugged into different BSM searches to 
produce good results with minimal tweaking
– Unless you care about jet substructure which are not covered by RMM 

 RMM can identify events with rather unexpected features without much 
thinking about ML inputs 
– Different decay channels (and their kinematics) are taken into account 

automatically 

 Will be applied to ATLAS searches for H+t in  dijet+lepton analysis using 
Run II data

Conclusions
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Backup
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Feature space for event classifications
 Event classification depends on prepared inputs

– Identify variables with background and signal “features”
– Data and dimensionality reduction
– Data re-scale (the range between 0 and 1 is a popular choice),
– Data normalization (to avoid cases when some of input values overweight others)
– etc.

 ANN are suppose to simplify analysis  but:
– Preparing analysis for NN  is time consuming
– Need to hand-pick variables, study them etc.. No uniqueness of input variables.

 Idea: create a general image-like transformation of lists with 4-momenta to 
data structures that reflect most significant features of hadronic-final state
– General representation of collision event. Single and double- particle densities
– Natural language for machine learning → leverage algorithms from leading 

industries
– Easy to visualize for humans
– Leverage algorithms for image identification from  leading industries
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Rapidity-mass matrix (RMM)

jets muons .. electrons, photons

e
T

miss – missing ET of events 

m
T
(i)  - transverse mass of object “i”

e
T
(i)   -  transverse energy (ordered)

δe
T
(i) – transverse energy imbalances

m(i,j) – two-particle invariant masses 
h

L
(i)   - cosh(y)-1  (y is rapidity) – Lorentz factor

h(i,j)   - cosh(0.5(y
i
 – y

j
)) -1 – rapidity difference

scaled by a constant

What does this 
matrix represent?

scaled by 1/√s

https://arxiv.org/abs/1805.11650

https://arxiv.org/abs/1805.11650
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Extending RMM
 RMM includes information on single and two-particle densities 

– but no phi due to rotational symmetry
 Can be extended to 3D matrices to include φ,  3-particle densities etc.

Plus:
 Add tau, leptons with + and – charges (separately), b-jets
 Increase multiplicity of each object to ~10-20 (empty cells are not stored)
 Add more complex (and well reconstructed) types: J/Phi, W, Z, Higgs

y

m

φ
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Monte Carlo simulations

Several processes from Pythia8 (LO+PS)
 Dijet QCD:

– All  2→2  processes (10)

 Top production:
– g g -> t tbar
– q qbar -> t tbar

 Charged Higgs production 
– b g -> H+- t

 Double boson production
– f fbar -> gamma*/Z0 gamma*/Z0
–  f fbar' -> Z0 W+-
– f fbar -> W+ W-

 SM Higgs production 

http://atlaswww.hep.anl.gov/hepsim/

All LO processes and all top/W/H decays enabled

http://atlaswww.hep.anl.gov/hepsim/
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Results of the ANN training using RMM

ANN output > 0.8
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