

Monte Carlo repository for particle physics and studies of tens-of-TeV hadronic jets for post-LHC experiments

S.Chekanov (ANL)

the second secon

Seminar, University of Maryland. Oct. 16, 2019

Z'(10 TeV) $\rightarrow t\bar{t} \rightarrow two jets$

With contributions from:

D.Blyth (ANL), M.Demarteau (ANL), A.Kotwal (U.Duke), N.Tran (Fermilab) S.Yu, (NCU), C.-H. Yeh (NCU), C.Solans, J.Repond (ANL), J.Proudfoot (ANL), A.Henriques (CERN)

Timeline of particle collision experiments

In the next decades we will deal with explorations of physics reach, detector parameters and new technology options for post-LHC era

Requires detailed simulation of physics processes and detector responses

Why do we need simulations? Higgs example

- 100 TeV collider will hunt for M~30 TeV particles decaying to Higgs/W/Z bosons
- New kinematic regime \rightarrow challenging for detector designs
- SM example: detectors must be optimized to reconstruct SM Higgs at large pT

What is HepSim?

https://atlaswww.hep.anl.gov/hepsim/

Repository with MC files and software toolkit for:

- Physics studies (discovery potential, future precision measurements, etc.)
- Exploration of general aspects of detectors using fast and full Geant4 simulations

NOT a file storage:

- i.e. files hosted where convenient using "https" and linked by HepSim
- for "baseline" detector simulations for CLIC, FCC-ee, FCC-hh, HE-LHC, EIC, CEPC etc.

Get involv	ved Full	Search Ex	periments Manual Mirrors Tools About	Login			HEP.AN	L.GOV
He Reposit	p8 tory with	iM h Monte Ca	rlo simulations for particle physics	 Jun.29, 20 D.Blyth Jun.20, 20 D.Blyth 	17: rfull058 tag with i 17: rfull057 tag with i	mproved ti alternative	racking stra tracking str	tegy from ategy from
Show 2	5 ▼ ent	ries	Previous	1 2 3	4 5 11	Next Se	earch:	
Id 🔺	→← ≬	E [TeV] ⁽⁾	Dataset name	Generator 🕴	Process	Торіс	Files	Created
286	e+e-	3	tev3ee_pythia8_qcdjets_tunes_qedoff	PYTHIA8	QCD dijet events with 7 tunes without ISR	SM	Info	2017/07/14
285	e+e-	0.38	gev380ee_pythia8_qcdjets_tunes_qedof	PYTHIA8	QCD dijet events with 7 tunes wothout ISR	SM	Info	2017/07/14
284	e-p	0.035	gev35ep_pythia8_dis1q2	PYTHIA8	DIS events at Q2>1 GeV2	SM	Info	2017/06/26
283	e-p	0.035	gev35ep_lepto6ard_dislowq2_jlab	LEPTO/ARIADNE	DIS events at Q2>1 GeV2 and W2>4 GeV2	SM	Info	2017/06/16
282	e+e-	0.5	gev500ee_pythia8_ttbar_tunes	PYTHIA8	top (ttbar) production with 7 tunes	SM	Info	2017/06/12
281	e+e-	14	tev14pp_pythia8_ttbar_tunes	PYTHIA8	top (ttbar) production with tune 14.	SM	Info	2017/06/09
280	e+e-	3	tev3ee_pythia8_ttbar_tunes	PYTHIA8	top (ttbar) production with 7 tunes	SM	Info	2017/06/03
279	e+e-	0.38	gev380ee_pythia8_ttbar_tunes	PYTHIA8	top (ttbar) production with 7 tunes	SM	Info	2017/06/03
278	e+e-	3	tev3ee_pythia8_qcdjets_tunes	PYTHIA8	QCD dijet events with 7 tunes	SM	Info	2017/05/20
277	e+e-	0.38	gev380ee_pythia8_qcdjets_tunes	PYTHIA8	QCD dijet events with 7 tunes	SM	Info	2017/05/19
276	e-p	0.035	gev35ep_lepto6ard_dislowq2	LEPTO/ARIADNE	DIS events at Q2>1 GeV2 and W2>4 GeV2	SM	Info	2017/05/17
275	e-p	0.035	gev35ep_lepto6_dis1q2	LEPTO/PYTHIA	DIS events at Q2>1 GeV2 and W2>5 GeV2	SM	Info	2017/05/01
274	e+e-	3	tev3ee_pythia8_higgs_ww	PYTHIA8	Higgs to WW	SM	Info	2017/04/29
273	e+e-	3	tev3ee_pythia8_higgs_bbar	PYTHIA8	Higgs to bbar	SM	Info	2017/04/29
272	e+e-	3	tev3ee_pythia8_qcdjets	PYTHIA8	QCD dijet events	SM	Info	2017/04/29
271	e-p	0.035	gev35ep_lepto6ard_dis1q2	LEPTO/ARIADNE	DIS events at Q2>1 GeV2 and W2>5 GeV2	SM	Info	2017/04/19
270	рр	13	tev13pp_pythia8_wh2l	PYTHIA8	WH2 with W to I+nu	Exotics	Info	2017/03/16
269	рр	13	tev13pp_pythia6_rho_techni	PYTHIA6	Technicolor rho_T to pi_T W	Exotics	Info	2017/02/26
268	рр	14	tev14pp_pythia8_higgs2mumu	PYTHIA8	Higgs to mu+mu-	Higgs	Info	2017/02/24

Exotics Info

plus W OCD diiets in bins 2017/02/23

267 pp

13

tev13pp pythia8 wprimezprime

What is HepSim?

https://atlaswww.hep.anl.gov/hepsim/

- Consists of a <u>web interface</u>, distributed web storage, <u>command-line tools</u>, <u>Jas3pp event browser</u>, containerized software (docker/singularity image)
- Began at Snowmass 2013-2014
- Used for physics and detector studies for future experiments (HL-LHC, HE-LHC, FCC, CLIC, CEPC, EIC, etc.) and several ATLAS papers
- Contributed to ~30 articles, ~40 talks (see <u>public results</u>)

Get invo	ived Full	search Ex	periments Manual Mirrors Tools About	Login	17: rfull058 tag with i	mproved to	HEP.ANL	. <i>GOV</i> eav f
Repos	itory with	h Monte Ca	rlo simulations for particle physics	D.Blyth • Jun.20, 20 D.Blyth	17: rfull057 tag with a	alternative	tracking stra	itegy
Show [25 🔻 ent	ries	Previous	1 2 3	4 5 11	Next Se	earch:	
Id 🕯	→ ≬	E [TeV] ⁽⁾	Dataset name	Generator 🕴	Process	Topic	Files	с
286	e+e-	3	tev3ee_pythia8_qcdjets_tunes_qedoff	PYTHIA8	QCD dijet events with 7 tunes without ISR	SM	Info	201
285	e+e-	0.38	gev380ee_pythia8_qcdjets_tunes_qedof	PYTHIA8	QCD dijet events with 7 tunes wothout ISR	SM	Info	201
284	e-p	0.035	gev35ep_pythia8_dis1q2	PYTHIA8	DIS events at Q2>1 GeV2	SM	Info	201
283	e-p	0.035	gev35ep_lepto6ard_dislowq2_jlab	LEPTO/ARIADNE	DIS events at Q2>1 GeV2 and W2>4 GeV2	SM	Info	201
282	e+e-	0.5	gev500ee_pythia8_ttbar_tunes	PYTHIA8	top (ttbar) production with 7 tunes	SM	Info	201
281	e+e-	14	tev14pp_pythia8_ttbar_tunes	PYTHIA8	top (ttbar) production with tune 14.	SM	Info	20:
280	e+e-	3	tev3ee_pythia8_ttbar_tunes	PYTHIA8	top (ttbar) production with 7 tunes	SM	Info	20:
279	e+e-	0.38	gev380ee_pythia8_ttbar_tunes	PYTHIA8	top (ttbar) production with 7 tunes	SM	Info	20:
278	e+e-	3	tev3ee_pythia8_qcdjets_tunes	PYTHIA8	QCD dijet events with 7 tunes	SM	Info	20
277	e+e-	0.38	gev380ee_pythia8_qcdjets_tunes	PYTHIA8	QCD dijet events with 7 tunes	SM	Info	20:
276	e-p	0.035	gev35ep_lepto6ard_dislowq2	LEPTO/ARIADNE	DIS events at Q2>1 GeV2 and W2>4 GeV2	SM	Info	20:
275	e-p	0.035	gev35ep_lepto6_dis1q2	LEPTO/PYTHIA	DIS events at Q2>1 GeV2 and W2>5 GeV2	SM	Info	20:
274	e+e-	3	tev3ee_pythia8_higgs_ww	PYTHIA8	Higgs to WW	SM	Info	20:
273	e+e-	3	tev3ee_pythia8_higgs_bbar	PYTHIA8	Higgs to bbar	SM	Info	20:
272	e+e-	3	tev3ee_pythia8_qcdjets	PYTHIA8	QCD dijet events	SM	Info	20:
271	e-p	0.035	gev35ep_lepto6ard_dis1q2	LEPTO/ARIADNE	DIS events at Q2>1 GeV2 and W2>5 GeV2	SM	Info	20:
270	рр	13	tev13pp_pythia8_wh2l	PYTHIA8	WH2 with W to I+nu	Exotics	Info	20
269	рр	13	tev13pp_pythia6_rho_techni	PYTHIA6	Technicolor rho_T to pi_T W	Exotics	Info	20
268	рр	14	tev14pp_pythia8_higgs2mumu	PYTHIA8	Higgs to mu+mu-	Higgs	Info	203
267	рр	13	tev13pp_pythia8_wprimezprime	PYTHIA8	Wprime to Zprime plus W	Exotics	Info	20

Why HepSim?

https://atlaswww.hep.anl.gov/hepsim/

Open access

- No authentication for use of event files
- Grab data with *hs-toolkit, wget, curl*, etc... your choice!
- Preservation of MC data, MC settings and detector geometries
- Mitigate reproducibility problem in publications
 - Published papers can cite HepSim samples
- Platform-independent analysis
 - Linux/Mac/Windows
 - Data streaming over URL
- Cache for iterative experiment design process

by W.Armstrong

A 💭 🖓

Leveraging large-scale computing

HepSim event statistics (excluding fast and Geant4 detector simulations)

- ~ 340 Monte Carlo samples (LO, NLO, NLO+PS, LO+PS)
- ~ 2 billion stored EVGEN events
 - ~ 10% after fast simulations(Delphes)
 - ~ 0.1% after Geant4 simulations

Usage of computational platforms:

- $10\% \rightarrow BlueGene/Q$ (ANL/Mira) (Jetphox, MCFM)
- $50\% \rightarrow \text{HEP-ANL}$ (mainly Madgraph)
- * 40% \rightarrow OSG-CI grid and USATLAS CI (for phase II)

Number of public file servers	6		
Number of event samples	306		
Number of NLO samples	17		
Number of NLO+PS samples	17		
Number of LO (+PS) samples	220		
Number of events	1736160679		
NLO events	570440248		
NLO+PS events	32860595		
LO (+PS) events	1015127136		
Total size (GB)	7373.477		
NLO size (GB)	238.099		
NLO+PS size (GB)	348.696		
LO (+PS) size (GB)	6761.413		
Number of files	344922		

CPU usage for HepSim simulations

HepSim uses:

- OSG "Future Collider" project (20 M CPU*h in 2016)
- OSG "EIC" (electron ion collider) project (starting from 2017)

Calorimeters for tens-TeV physics. S.Chekanov (ANL)

🛯 🗝 🕬 🕬 🖉 🖉

'All-silicon' design concepts supported in HepSim

Share similar design, but differ in sizes, calorimeter readouts etc Interfaced with common Monte Carlo samples

Bringing innovations to I/O: ProMC and ProIO

http://atlaswww.hep.anl.gov/asc/promc/ and https://github.com/proio-org

- HepSim uses new event formats: ProMC and ProIO
- Archive self-described format to keep events
- 30% smaller files than ROOT I/O

Google's Protocol buffers
Protobuf
Protocol Buffers - Google's data interchange format

Number of used bytes depends on values. Small values use small number of bytes

- Effective file size reduction for pile-up events
 - Particles with small momenta \rightarrow less bytes used
- Separate events can be streamed over the Internet
- ProMC is being replaced by ProIO data format
 - Comm. Phys. Comm. 241 (2019) 98

Flexible, modern API for reconstructed events, support for C++/Java/Python/GO languages

Other HepSim formats: ROOT and LCIO (full simulation)

compression strength keeping precision of representation constant

ProMC: S.C., E.May, K. Strand, P. Van Gemmeren, Comp. Physics Comm. 185 (2014), 2629

Show all	He	enS	im		ſ	• Apr 15, 2019: Moving to globus (petrel)			^
$p \rightarrow \leftarrow p$	Repos	itory wit	h Monte Carl	lo simulations for particle physics		 Sep.10 2018: Zprime/DM event samples Mar.15 2018: Charged Higgs event samp 	les		~
8 TeV						- Cap 33 3017, 7 Higgs - Bubu IV over	t complee		
13 TeV	Show	25 v e	entries		Previo	us 1 2 3 4 5 13	Next Search:		
14 TeV	Id 🔺	→←≜	E 🍦	Dataset name	Generator	Process	Торіс 🕴	Files	Created 🗍
27 TeV			[TeV]						
33 TeV	338	pgun	1	pgun_eta0_b0	PARTICLE GUN	Single particles at Eta=Phi=0 with B-field=0	Single particles	Info	2019/09/03
100 TeV	337	рр	14	tev14pp_pythia8_gammajet_weighted	PYTHIA8	Direct photon production	SM	Info	2018/12/16
e⁺→←e—	336	рр	13	tev13pp_pythia8_minbias_a14	PYTHIA8	MinBias (ND+SD+DD) A14	SM	Info	2018/11/23
250 GeV	335	рр	14	tev14pp_pythia8_minbias_a14	PYTHIA8	MinBias (ND+SD+DD) A14	SM	Info	2018/11/22
380 GeV	334	рр	13	tev13pp_mg5_chaH4FNS	MADGRAPH/PY8	Charged Higgs (H+t) production in 4FNS	Exotics	Info	2018/11/10
500 GeV	333	рр	13	tev13pp_pythia8_qcd_jz	PYTHIA8	QCD multijets with filtered in pT slices	SM	Info	2018/10/31
1 TeV	332	рр	13	tev13pp_pythia8_qcd_em	PYTHIA8	QCD multijets with filtered leptons	SM	Info	2018/10/26
3 TeV	331	рр	13	tev13pp_pythia8_ttbarwz_wgt	PYTHIA8	SM EW and top processes	SM	Info	2018/10/25
$\mu^+ \rightarrow \leftarrow \mu^-$	330	рр	13	tev13pp_mg5_dm_a_boson	MADGRAPH/PY8	Zprime for dijet+W/Z events and interference	Exotics	Info	2018/10/09
1 TeV	329	DD	13	tev13pp ma5 dm boson	MADGRAPH/PY8	Zprime for dijet+W/Z events	Exotics	Info	2018/09/26
5 TeV	220	FF	10	toul2pp_nthia0_ppm	DVTUIAQ		CM	Info	2010/00/16
10 TeV	328	рр	13	tev13pp_pytnia8_rmm	PTIHIA6	Various SM/BSM process for ML	SM	100	2018/09/10
20 TeV	327	рр	13	tev13pp_qcd_pythia8_proio	PYTHIA8	QCD dijets for ProIO tests	SM	Info	2018/08/27
40 TeV	326	рр	13	tev13pp_qcd_pythia8_proio_tests	PYTHIA8	QCD dijets for tests of ProIO	SM	Info	2018/08/20

•∓()		Get invol	ved Full S	Search E	Experiments Manual Mirrors Tools Ab	bout Login								
Show all		He	pSi	m/	1		ſ	• March 15 2	2018: Charge	d Higgs	event samples	pploc		
$p \rightarrow \leftarrow p$		Reposit	ory with M	1	o simulations for particle physics			 Sep,22 20. Sep,15 20. Sep,15 20. 	17: Z+⊓iggs 17: Higgs → I	→ nunu mu+mu	- event sample	npies :S		
8 TeV														
13 TeV	SM	ow .	25	Sele	ect by beam species,			Previous	1 2	3	4 5 1	3 Ne	_{xt} Search:	
14 TeV	Higgs	Id Id			CM energy, and	₹	Generator	Å. ▼	Pr	ocess		$\stackrel{\wedge}{=}$	Topic 🍦	Files 🗍
27 TeV	Тор	25		top	bic (SM, Exotic, etc)		PYTHIA8	DIS events a	at Q2>1 GeV	2			SM	Info
33 TeV	Exoti	323	рр				MADGRAPH/PY8	H- top with	H- to HW an	d tan(be	eta)=1-7		Exotics	Info
100 TeV		322	рр		tevropp_mgo_cnam_cotta_co		MADGRAPH/PY8	H- top with	H- to tb and	tan(bet	a)=1-7		Exotics	Info
e⁺→←e—		321	рр	1	tev13pp_mg5_chaHW_tbeta_tb		MADGRAPH/PY8	H+ W- with	H+ decay to	t-bbar	tan(beta)=1-7		Exotics	Info
250 GeV		320	рр	13	tev13pp_mg5_chaHW_tbeta_hw		MADGRAPH/PY8	H+ W- with	H+ decay to	HW for	tan(beta)=1-7	,	Exotics	Info
380 GeV		318	рр	13	tev13pp_pythia8_gamgam		PYTHIA8	Higgs to gar	mma gamma				SM	Info
500 GeV		315	рр	100	tev100pp_qcd_pythia8_weighted		PYTHIA8	QCD dijets ((weighted)				SM	Info
1 TeV		314	рр	27	tev27pp_qcd_pythia8_weighted		PYTHIA8	QCD dijets ((weighted)				SM	Info
3 TeV		313	рр	13	tev13pp_mg5_rho_techni		PYTHIA6	Technicolor r	rho_T to pi_T	W			Exotics	Info

•≠0		Get invo	lved Fulls	Search Exp	periments Manual Mirrors Tool	Choose o generat	lataset b for and p	ased on rocess					
Show all		Но	nQi	m		de	scription	IS	P: Charged	Higgs even	t camples		
$p \rightarrow \leftarrow p$	Repository with Monte Carlo simulations for particle physic					Z+Higgs → nunu+XX event samples Higgs → mu+mu- event samples							
8 TeV							ר ר			a with incore	und Franking (TRATAGU	
13 TeV	SM	ow	25 🗸 en	tries			くして	Previous	1 2	34	5 13	Next Search:	
14 TeV	Higgs	Id 🕯	→← ᢤ	E [TeV] Dataset name	÷	g or	\$	Pro	cess		🛊 Topic 🛊	Files 🕴
27 TeV	Тор	25	e-p	0.035	gev35ep_pythia8_dis1q2ct14l	lo P'	/THIA8	DIS events at	Q2>1 GeV2			SM	Info
33 TeV	Exotio	123	pp	13	tev13pp_mg5_cbaHT_tbeta_k	ער M	ADGRAPH/PV8	H- top with H-	- to HW and	tan(beta)=	1-7	Exotics	Info
100 TeV		525	PP	10							_	=	
		322	рр	13	tev13pp_mg5_chaHT_tbeta_t	.b Mi	ADGRAPH/PY8	H- top with H-	- to tb and t	an(beta)=1	-7	Exotics	Info
e⁺→←e [—]		321	рр	13	tev13pp_mg5_chaHW_tbeta_	_tb M/	ADGRAPH/PY8	H+ W- with H	+ decay to t	-bbar tan(b	<u>eta)</u> =1-7	Exotics	Info
250 GeV		320	рр	13	tev13pp_mg5_chaHW_tbeta_	hw M	ADGRAPH/PY8)=1-7	Exotics	Info
380 GeV		318	рр	13	tev13pp_pythia8_gamgam			Then clic	k on d	ata set		SM	Info
500 GeV		315	рр	100	tev100pp_qcd_pythia8_weigh	ited		name to	look a losely	more		SM	Info
1 TeV		314	рр	27	tev27pp_qcd_pythia8_weight	ed V P	(THIA8		loociy			SM	Info
3 TeV		313	рр	13	tev13pp_mg5_rho_techni	P	/THIA6					Exotics	Info

Show all

p →← p
8 TeV
13 TeV
14 TeV
27 TeV
33 TeV
100 TeV
e⁺→←e—

250 GeV
380 GeV
500 GeV
1 TeV
3 TeV
<i>u</i> +

$\mu^+ \rightarrow \leftarrow \mu^-$ 1 TeV 5 TeV 10 TeV 20 TeV 40 TeV

HepSim

Repository with Monte Carlo simulations for particle physics

Dataset: "tev100pp_qcd_pythia8_ptall"

	Summary page for datas
Name:	tev100pp_qcd_pythia8_ptall with basic par
Collisions:	pp integrated lun
CM Energy:	100 TeV
Entry ID:	219 Dago
Topic:	sm page
Generator:	PYTHIA8
Calculation level:	LO+PS+hadronisation
Process:	QCD dijets in bins of pT
Total events:	490000
Number of files:	490
Cross section (σ):	4.582E+07 ± 7.751E+05pb
Luminosity (L):	0.0107 pb ⁻¹ (or) 1.069E-05 fb ⁻¹ (or) 1.069E-08 ab ⁻¹
Format:	ProMC
Download URL:	http://mc.hep.ani.gov/asc/hepsim/events/pp/100tev/qcd_pythia8_ptall
Mirrors:	http://portal.nersc.gov/project/m1758/data/events/pp/100tev/gcd_pyth/
EVGEN size:	36.169 GB
	🝆 Tags:
	· -
	rfast005 Info
Fast simulation:	100 / 1.56 GB
	10/18/2018
	rfull015 Info rfull009 Info
Full simulation:	341 / 15.85 GB 434 / 57.82 GB 06/06/2017 06/23/2017

• Apr 15, 2019: Moving to globus (petrel)

71

es

ples

amples

This brings up information page for dataset. Starting with basic parameters, integrated luminosity, and a link to the download page

Sep.¹

M

Estimated from file Nr 1

Status: Available

Web Interface - Truth Level Navigation

← Back to HepSim Info page

Dataset: tev100pp_qcd_pythia8_ptall

http://mc.hep.anl.gov/asc/hepsim/events/pp/100tev/qcd_pythia8_ptall

Download: hs-get tev100pp_qcd_pythia8_ptall

		File name	Size
1	Ē	<u>tev100_pythia8_jets_pt100_001.promc</u>	64.23 MB
2	Ē	<pre>tev100_pythia8_jets_pt100_002.promc</pre>	62.94 MB
3	Ē	<pre>tev100_pythia8_jets_pt100_003.promc</pre>	64.33 MB
4	Ē	<pre>tev100_pythia8_jets_pt100_004.promc</pre>	62.05 MB
5	Ē	<pre>tev100_pythia8_jets_pt100_005.promc</pre>	63.73 MB
6	Ē	<pre>tev100_pythia8_jets_pt100_006.promc</pre>	63.76 MB
7	Ē	<pre>tev100_pythia8_jets_pt100_007.promc</pre>	63.11 MB
8	Ē	<pre>tev100_pythia8_jets_pt100_008.promc</pre>	65.81 MB
9	Ē	<pre>tev100_pythia8_jets_pt100_009.promc</pre>	63.98 MB
10	Ē	<pre>tev100_pythia8_jets_pt100_010.promc</pre>	63.4 MB
11	Ē	<pre>tev100_pythia8_jets_pt100_011.promc</pre>	64.29 MB
12	Ē	<pre>tev100_pythia8_jets_pt100_012.promc</pre>	65.05 MB
13	Ē	tev100_pythia8_jets_pt100_013.promc	62.44 MB
14	Ê	tev100_pythia8_jets_pt100_014.promc	63.41 MB
15	Ē	tev100_pythia8_jets_pt100_015.promc	64.02 MB
16	Ē	<pre>tev100_pythia8_jets_pt100_016.promc</pre>	62.48 MB
17	Ē	tev100_pythia8_jets_pt100_017.promc	62.93 MB
18	Ē	tev100_pythia8_jets_pt100_018.promc	64.68 MB

Web Interface - Truth Level Navigation

•≠0	Get involved Full Se	earch Experiments Manua	l Mirrors Tools About Login		HEP.ANL.GOV				
Show all	HepSi	m	Navigate by detector and/or experiment	or un.29, 2017: rfull058 tag with improv	ved tracking strategy from				
$oldsymbol{q} ightarrow oldsymbol{ ho} oldsymbol{ ho}$	Repository with I	Monte Carlo simulations		un.20, 2017: rfull057 tag with alternative tracking strategy from					
8 TeV	Horo is a list of tag	s with simulation of datasts							
13 TeV		s with simulation of detecto	JIS.						
14 TeV		Tags with full simulations							
27 TeV	Nr	Eind data	Detector	Evnorimont	Description				
33 TeV	NI		Detector	experiment	Description				

100 TeV

e⁺→←e[—]

250 GeV

380 GeV

500 GeV

1 TeV

3 TeV

 $\mu^+ \rightarrow \leftarrow \mu^-$

	•			
1	rfull001	sidloi3	ILC	🚺 Info
2	rfull002	sidcc1	CEPC	🚺 Info
3	rfull003	sidloi4	ILC	🚺 Info
4	rfull006	sifcch4	FCC-hh, SppC	🚺 Info
5	rfull009	sifcch7	FCC-hh, SppC	🚺 Info
6	rfull010	sifcch8	FCC-hh, SppC	👔 Info
7	rfull011	sifcch9	FCC-hh, SppC	🗊 Info
8	rfull012	sifcch10	FCC-hh, SppC	🚺 Info
9	rfull013	sifcch11	FCC-hh, SppC	🗊 Info

1	srfast001	delphes fcchh1	FCC-hh, SppC	😭 Info
Nr	Available datasets	Detector	Experiment	Info
Tags with fast simulations				
23	rfull201	sidclic1	CLIC	î Info
22	rfull101	sidcc2	CEPC	🕤 Info
21	rfull059	sieic5	EIC	👔 Info
20	rfull058	sieic5	tag	👔 Info
19	rfull057	sieic5	Use Info link to	🚺 Info
18	rfull056	sieic5		🚺 Info
17	rfull054	sieic4	EIC	👔 Info
16	rfull053	sieic3	EIC	👔 Info
15	rfull052	sieic2	EIC	👔 Info
14	rfull051	sieic1	EIC	👔 Info
13	rfull017	sifcch7	FCC-hh, SppC	🚺 Info
12	rfull016	sifcch7	FCC-hh, SppC	👔 Info
11	rfull015	sifcch7	FCC-hh, SppC	🕤 Info

delphes_fcchh2

FCC-hh, SppC

Web Interface - Simulation Tag Navigation

rfast002

2

1 Info

← Back to HepSim Info page

Dataset: gev35ep_pythia8_dis1q2%rfull058

http://mc1.hep.anl.gov/web/hepsim/events/ep/35gev/pythia8_dis1q2//rfull058/

Download: hs-get gev35ep_pythia8_dis1q2%rfull058

		File name	Size
1	Ê	gev35ep_pythia8_gev1q2_002_hepsim.slcio	22.58 MB
2	Ē	gev35ep_pythia8_gev1q2_003_hepsim.slcio	22.75 MB
3	Ē	gev35ep_pythia8_gev1q2_005_hepsim.slcio	22.43 MB
4	Ē	gev35ep_pythia8_gev1q2_006_hepsim.slcio	23.7 MB
5	Ē	gev35ep_pythia8_gev1q2_007_hepsim.slcio	22.86 MB
6	Ē	gev35ep_pythia8_gev1q2_012_hepsim.slcio	22.91 MB
7	Ē	gev35ep_pythia8_gev1q2_014_hepsim.slcio	22.42 MB
8	Ē	gev35ep_pythia8_gev1q2_015_hepsim.slcio	22.75 MB
9	Ē	gev35ep_pythia8_gev1q2_017_hepsim.slcio	21.97 MB
10	Ē	gev35ep_pythia8_gev1q2_019_hepsim.slcio	23.12 MB
11	Ē	gev35ep_pythia8_gev1q2_021_hepsim.slcio	22.4 MB
12	Ē	gev35ep_pythia8_gev1q2_022_hepsim.slcio	22.53 MB
13	Ē	gev35ep_pythia8_gev1q2_023_hepsim.slcio	22.77 MB
1/	Ē	gov35on pythia8 gov1g2 021 honsim sloid	22.04 MD

Note that hs-toolkit command is now tagged

Web Interface - Truth Level Navigation

Web-based 3D browser for detector geometries

- Detector volumes can interactively be studied in 3D using GeoManager
- Functionality since 2017

Design a detector \rightarrow create LCIO files \rightarrow performance studies

Physics studies:

- Use truth-level Monte Carlo samples
- Use fast detector simulations using Delphes program

Detector design: full simulation and reconstruction software chain

- Using HepSim's truth-level samples as input
- Produce simulated/reconstructed samples at key points
- Simulation tags serve as a means to distribute and organize samples
- Each geometry iteration is documented with simulation tags
- Collaboratively assesses change in detector performance by referencing tags

Example: Studies of CEPC silicon tracker option

https://atlaswww.hep.anl.gov/hepsim/detectorinfo.php?id=sidcc3

652

24

885

SidCC3

- SiD modified design to match CEPC goals (250 GeV) proposed in 2016 (S.C. & M. Demarteau IJMPA 31 644021-1)
- Silicon concept tuned by Wei-Ming Yao and Manqi Ruan in 2017
 - \checkmark expanding the SID design to full CEPC tracking volume \rightarrow SIDB
 - CEPCSIDV6 vs SIDB: W.M. Yao, Workshop on CEPC (2017)
- Included to Sect. "Full silicon tracker" (FST) in CEPC CDR (2018)

Example: Studies of physics at CLIC

CLICdp-Note-2017-005 (2018) M. Demarteau, S.C., A. Fischer, J. Zhang

reconstruction, event shapes etc?

Entries/tot Entries/tot 0.04 e⁺ e⁻ vs = 380 GeV e⁺ e⁻ √s = 3 TeV **PYTHIA 8.226** PYTHIA 8.226 Tune 0 — Tune 0 Tune 1 ···· Tune 1 Tune 2 Tune 2 Tune 3 Tune 4 0.04 Tune 5 Tune 4 **Breit-Wigner fit Breit-Wigner fit** Tune 6 Tune 5 Tune 6 0.02 0.02 0.01 1.2 1.2 ¹ **L**/¹ **L** 0.8 **Τ**| / **Τ**0 0.8 172 176 180 162 164 166 168 170 174 178 M_{3-let} [GeV] 185 19 M_{iet} [GeV] 180 165 170 175 190 Calorimeters for tens-TeV physics. S.Cheka

At CLIC energies of 380 GeV, e+e- collision can produce tt pairs

Can modeling non-perturbative phase in Pythia8 affect top mass

80 MeV shift was observed for top mass from 3-jet events

700 MeV for boosted mass (dominated by Montull tune)

All samples for different tunes available from HepSim

HL-LHC and HE-LHC studies

- Searches for high mass states in dijets (b-jets)
- 100 billion events created using HepSim singularity image at NERSC
- Event files cannot be stored .. but histograms can be saved

Studies of high-pT jets for 100 TeV colliders

Some history

LHC

Projections: for pT max:

HE-LHC:	√s =27 TeV	~ 10 TeV jets
FCC/SppS:	√s = 100 TeV	~ 30 TeV jets

What are technology challenges to reconstruct such jets?

Hadronic calorimeter (HCAL) and nuclear interaction length

Contains ~40% of jet energy pT> 3 TeV. Performance improves with energy!

E.M. COMPONENT

HADRONIC

COMPONENT

- Measures neutral and changed particles
- Strong interaction, messy hadronic showers
- Typical scale is the interaction length λ_{I}

ABSORBER

π+

PYTHIA8 simulation

 $\lambda_{1} \sim$ longitudinal and transverse (?) profile of hadronic showers

leavy fragmen

- "Rule of thumb": transverse cell size ~ λ_1
 - » Example: $\lambda_1 \sim 18$ cm for Fe
- \sim 20 cm transverse size of HCAL cells for LHC and (pre)LHC experiments
- Is any preferential transverse direction in hadronic shower created by jets that can be detected by reducing cell sizes below λ_1 ?
- Can TeV-scale physics benefit from small cell sizes of HCAL?

ATLAS Preliminary

Instrumentation challenges beyond the LHC era

- What are detector requirements for physics beyond the LHC (HE-LHC, FCC-hh etc)?
 → Jets and particles up to 30 TeV in transverse momentum (vs 3 TeV at LHC)
- Are the current technologies sufficient and affordable?
 We know how to measure cosmic rays with energy several magnitude larger than at the LHC, but post-LHC colliding experiments are something else:
- Controlled collision environment
- High-precision measurements
- Complex subdetectors
- Large collision rate
- Super-boosted objects with small angular separation of decay products (W,top, etc).

Detector requirements driven by physics at 100 TeV

- Good containment up to pT(jet)~30 TeV: 12 λ, for ECAL+HCAL
 - affects jet energy resolution
 - leakage biases, etc.
- Small constant term for energy resolution: c < 3%</p>
 - dominates jet resolution for pT>5 TeV
 - important for heavy-mass particles decaying to jets
- Longitudinal segmentation
 - ??
- Sufficient transverse segmentation for resolving boosted particles:
 - Current LHC experiments: $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$
 - For FCC-hh: suggested $\Delta \eta \times \Delta \phi = 0.025 \times 0.025$ using fast simulation (Delphes)

Study these questions using realistic Geant4 simulations and reconstruction

See: The Hadron Collider: "Future Circular Collider Conceptual Design Report" Volume 3. Eur. Phys. J. Spec. Top. (2019) 228, 755

Calorimeters for tens-TeV physics. S.Chekanov (ANL)

31

Estimating HCAL depth

pT(jet)>30 TeV: ~10% will be carried by 1 TeV hadrons (~9 hadrons/jet) 12 λ_1 is needed to contain 98% of energy of a 1 TeV hadron

Geant4 simulation agrees with calculations for SSC (.. 1984 Gordon&Grannis. Snowmass)

Detector simulations for 100 TeV physics

FCC-hh <u>reference</u> detector

Eur. Phys. J. Spec. Top. (2019) 228, 755

SiFCC: performance detector

- Larger than ATLAS
- Optimized forward region
- Twin solenoid + forward dipoles
- Fast detector simulations

- Derived from the SiD/CLIC "all silicon" concept
- Compact (~20% smaller than ATLAS + muon det.)
- |η|<2.5 optimized for 100 TeV collisions</p>
- Playground for various designs and technologies
- Fast turnover to modify the detector & create Monte Carlo events
- Geant4 simulation & reconstruction since 2016
- All simulations are archived in HepSim repo

Characteristics of SiFCC

http://atlaswww.hep.anl.gov/hepsim/detectorinfo.php?id=sifcch7

- 5 T solenoid outside HCAL
- Si pixel and outer trackers (5 + 5 layers):
 - 20 μm pixel (inner), 50 μm (outer)
- ECAL (Si/W): 2x2 cm. 32 layers, ~35 X0
- HCAL (Scint. / Fe) ~ FCC-hh reference
 - 5x5 cm cells: Δη x Δφ = 0.022 x 0.022 x4 smaller than for CMS & ATLAS
 - 64 longitudinal layers \rightarrow 11.3 $\lambda_{_{I}}$
 - 3.1% sampling fraction
- > 150 M non-projective cells (ECAL+HCAL)

JINST 12 (2017) P06009 https://arxiv.org/abs/1612.07291

WWW link to explore this detector

Event simulation and reconstruction

- SLIC simulation v5: updated for Geant 10.3p1 (J.McCormick, D.Blyth, W.Armstrong, S.C, etc)
 - updated for Geant 10.3p1, decoupled from ILCSOFT
- Fast LCSIM track reconstruction: (D.Blyth, J.McCormick, N.Graf, etc.)
 - 3-4 speed increase compared to the previous releases
- Fast PandoraPFA (J.Marshall, M.Thomson)
- Integrated with HepSim repository. Analysis: C++/Root or Jas4pp
- ~20 M CPU*h using Open Science Grid (OSG)

SO

Energy reconstruction in SiFCC

From M.Thomson

Cone algorithm

Start from inner layer and work outward

Notes:

- Birks' effect was not included
- Min mip cut was applied on hits
- 100 ns for fastest hit contribution
- No PFA for this study

Response to single particles: 8 TeV pions

Example: True momentum of π + : 8.16 TeV

After SiFCC reconstruction (>1.5 M HCAL cells):

- ~30000 calorimeter hits, ~500 SiTracker hits
- 1 reconstructed PFA (pi+) P=8.97 TeV
- 1 reconstructed CaloCluster at P=8.40 TeV
- Many back-splash interactions

Based on HepSim: http://atlaswww.hep.anl.gov/hepsim/info.php?item=201

Particle response using calorimeter clusters

Energy Response: ratio between the reconstructed jet energy (or p_T) and the corresponding truth-particle jet energy (or p_T) in the simulation, i.e. $< p_T/p_T$, truth

Response is non-linear (as expected) \rightarrow non-compensation due difference in response between electromagnetic and hadronic showers, energy losses in inactive regions of the detector etc. etc. \rightarrow require jet energy correction **Important:**

no downward trend, i.e. no leakage outside the HCAL for 20 TeV single pions

Resolution for single hadrons (π^{\pm})

JINST 12 (2017) P06009 https://arxiv.org/abs/1612.07291

- Single pi+ randomly distributed in eta & phi
- pT is reconstructed by collecting energies from all RecoClusters

- ~47% sampling term, 1.4% constant term
 - sampling term is consistent with ATLAS-like setup (arXiv:1604.01415)
- Calorimeter resolution is better than for SiTracker for pT>3 TeV
 - Tracker: outer radius R=2.1 m, 5 T solenoid, 25 um pixel size

Jet resolution and response. AntiKT R=0.4 jets

- Jet energy resolution is similar to ATLAS jets ("EM" scale) for pT(jet)<1 TeV
- Fit with the sampling and constant term is not perfect (χ^2 /ndf ~ 2.5)
- Fixing constant term to 1-2% leads to a similar fit quality
 - Constant term < 2% can be achieved

With contributions from: J.McCormick (SLAC) A.Dotti (SLAC) A.Ribon (CERN)

High granularity HCAL for 100 TeV physics

- Baseline for past & operational detectors:
 - transverse cell size is similar or larger than nuclear interaction length: λ_1
- Conclusion from CALICE R&D:
 - 2x2 or 1x1 cm cell sizes required to reconstruct PFA for separate particles
- Question for post-LHC colliders:

Can reconstruction of jets and particles at tens-of-TeV scale benefit from small HCAL cells?

Several simulations with ECAL cells 2x2 cm while HCAL cell sizes were varied:

SiFCC detector version (Fe/Scin. HCAL)	Transverse size of HCAL cells (cm or ΔηxΔφ)	Transverse size of HCAL cells in λ _ι	Simulation tag in HepSim
SiFCC-v7 (baseline)	5X5 cm (ΔηxΔ ϕ = 0.022 x 0.022)	$\sim \lambda_{_{\rm I}}/4$	rfull009
SiFCC-v8 (traditional)	20x20 cm (ΔηxΔφ = 0.1 x 0.1)	~ λ _ι	rfull010
SiFCC-v9 (as ECAL)	2x2 cm (ΔηxΔ $φ$ = 0.01 x 0.01)	λ _ι /8	rfull011
SiFCC-v10 (fine)	1x1 cm (ΔηxΔ $φ$ = 0.005x 0.005)	λ _ι /17	rfull012

HCAL segmentation: double particles

 Look at hits associated with two close-by particles (before any clustering)

E(GeV) HCAL CELLS 500 **⊑ gen** ∆**R = 0.035** 20см х 20см 400 ECAL 2x2 cm Red: HCAL hits Blue: ECAL hits 100F -0.3-0.2 -0.1 0 0.1 0.2 0.3 $\Delta\Phi$ rad HCAL CELLS E(GeV) 600F gen ∆R = 0.035 5см х 5см 500 ECAL 2x2 cm 400F 300 200 100F -0.3 0.1 -0.2 -0.1 0 0.2 0.3 ΔΦ rad

truth-level separation between 2 K_{L} is 0.035 rad (2 deg)

- Generate two K_{L} (E=100 GeV) particles at η =0.
 - First K_1 is always at $\Phi^{true}=0$
 - Second is shifted by $\Delta \Phi^{true} = 2 \text{ deg}$
- Calculate energy of hits in Φ with respect to $\Phi=0$
- Repeat for different HCAL cell sizes

Small HCAL cells (~ λ_1 /4) helps separate hits in hadronic showers from two K_L separated by 2 deg

Extends CALICE observation to high energies (1 TeV)

Are small cells useful for multi-TeV jets?

JINST 12 (2017) P06009 https://arxiv.org/abs/1612.07291

Event display of Z' (40 TeV) $\rightarrow q\overline{q}$

First realistic Geant4 simulation of ~20 TeV jets (FCC week, Apr 2016) High-granularity HCAL, 10k hits in ECAL, 46k hits in HCAL, 12k/1k hits in the outer/inner tracker

Busy event, large number of back-splash interactions in ECAL/HCAL/Tracker

What about 5, 10, 20 TeV jets?

See: C.-H. Yeh et al, JINST 14 (2019), P05008

Effective jet radius of antiKT5 jets

Sum over all distances between energy deposits and jet center, weighted with E(const) / E(jet)

- Jets with pT>10,20 TeV, each from $W \rightarrow q\overline{q}$
- Narrow ($\Delta R \sim 2^* \text{ pT} / M(W)$) compared to QCD jets (not shown)
- 5x5 cm cells ($\Delta\eta x \Delta \phi = 0.022 \times 0.022$) show improvement compared to $\Delta\eta x \Delta \phi = 0.1 \times 0.1$ (ATLAS)
- Small difference between 2cm and 1cm cell sizes

Jet splitting scale: d₁₂

K_τ scale at which a jet splits into 2. Used to differentiate QCD jets from 2-body decays (W,H,etc)

W-jets from Z'(20 TeV)

W-jets from Z'(40 TeV)

- Jets with pT>10,20 TeV, each from W decays $(q\overline{q})$
- 5x5 cm cells ($\Delta\eta x \Delta \phi = 0.022 \times 0.022$) show improvement compared to $\Delta\eta x \Delta \phi = 0.1 \times 0.1$ (ATLAS)
- Small difference between 2cm and 1cm cell sizes

46

Studies of N-subjettiness using SiFCC

Jesse Thaler, Ken Van Tilburg (JHEP 1103:015,2011)

 $au_{21} = au_2/ au_1$ — used for boosted W studies

- Use overlap between QCD and W jets as a benchmark for effectiveness of tau21 for boosted W reconstruction
- Use different HCAL granularity from 20x20 cm to 1x1 cm (ECAL same)

Also see the poster: "The importance of calorimetry in highly boosted jet substructure" by Evan Coleman et al. describing N-subjettiness for fast simulations using for 100 TeV

Calorimeters for tens-TeV physics. S.Chekanov (ANL)

J.Thaler and K. Van Tilburg, JHEP 1103 (2011) 015

Efficiency vs background rejection for different cell sizes C.-H. Yeh JINST 14(2019) P05008

Summary

- Boosted jets are studied up to 30 TeV in transverse momentum using Geant4 simulation with realistic reconstruction (from HepSim)
 - Constant term of <2% for jet energy resolution (with simplified readout)
 - Calorimeter is primary instrument for tens-of-TeV physics (compared to tracker)
- Separation of hits from close-by large pT particles in high-granularity HCAL
- Reconstruction of jet substructure benefits from HCAL granularity:
 - Optimal HCAL cell size is $\Delta \eta \propto \Delta \phi = 0.022 \propto 0.022$ (vs $\Delta \eta \propto \Delta \phi = 0.1 \propto 0.1$ for ATLAS) for jet radius and splitting scale
 - W reconstruction using τ_{21} benefits from 1x1 cm cells (Δη x Δφ =0.005 x 0.005). But challenging to see this for 20 TeV jets
- R&D focused on cost-effective options for signal readout of high-granularity calorimeters for pp colliders is required

Thanks!

For more information, see the HepSim web manual and hs-help on the command line.

HepSim manual: <u>https://atlaswww.hep.anl.gov/hepsim/doc/</u>

HepSim contributors: https://atlaswww.hep.anl.gov/hepsim/doc/doku.php?id=hepsim:contributions

HepSim public results: https://atlaswww.hep.anl.gov/hepsim/doc/doku.php?id=hepsim:public

Backup

Jet energy fraction

Jets from RecoClusters

Constituents of tens-of-TeV jets:

- span 4 orders of magnitude in energy
 - vs 2 orders for 100 GeV jets
- dependence on fragmentation function?

Hadronic calorimeter (HCAL)

- Strong interactions make jets
 - billions of jets with > 2 TeV at future colliders (28-100 TeV CM energy)
- Higgs, W, Z, top (pT>2 TeV) decay to narrow jets with jet radius smaller than 0.2 in $\varphi x \eta$. Such narrow jets have substructure (2 or 3 subjets)
- Physics goals of future colliders search for particles with masses 10-50 TeV that can decay to Higgs, W, Z, top decays

 \rightarrow narrow jets with pT>5-25 TeV from Higgs, W, Z, top

• How to build a HCAL that can:

Calorimeters for tens-TeV physics. S.Chekanov (ANL)

- measure jet energies (up to 30 TeV)?
- resolve internal structure of narrow jets?

Typical cell size for

ATLAS & CMS HCAL

SiFCC detector

https://arxiv.org/abs/1612.07291

Table 1: Technology and dimensions of the SiFCC sub-detectors in the barrel region. The solenoid field is given inside and outside the solenoid, respectively.

Barrel	Technology	pitch/cell	radii (cm)	z size (cm)
Vertex detector	silicon pixels/5 layers	$25~\mu{ m m}$	1.3 - 6.3	38
Outer tracker	silicon strips/5 layers	$50~\mu{ m m}$	3 9 - 209	921
ECAL	silicon pixels+W	$2 \times 2 \text{ cm}$	210 - 230	976
HCAL	scintillator+steel	$5 \times 5 \text{ cm}$	230 - 470	980
Solenoid	$5 \mathrm{T}$ (inner), -0.6 T (outer)	-	480 - 560	976
Muon detector	RPC+steel	$3{\times}3~{ m cm}$	570 - 903	1400

Table 2: Technology and dimensions of the SiFCC sub-detectors for the endcap region.

Endcap	Technology	pitch/cell	z extent	outer radius
			(cm)	(cm)
Vertex detector	silicon pixels	$25~\mu{ m m}$		
Outer tracker	silicon strips	$50 \ \mu m$		
ECAL	silicon pixels $+W$	$2 \times 2 \text{ cm}$	500 - 516	250
HCAL	scintillator+Steel	$5 \times 5 \text{ cm}$	518 - 742	450
Muon detector	RPC+Steel	$3 \times 3 \text{ cm}$	745 - 1010	895
Lumi calorimeter	silicon+W	$3.5 \times 3.5 \text{ mm}$	495 - 513	20
Beam calorimeter	semiconductor+W	$3.5 \times 3.5 \text{ mm}$	520 - 539	13

Resolution for single pions

- a stochastic/sampling term,
- b electronic noise term
- c constant term

"c" dominates for jet with pT>5 TeV

- Geant4 TileCal inspired simulation based on FTFP_BERT
- Calculate single-particle resolution
- Stochastic term is close to 45%/√E
- Constant term improves by ~20% with increase of 1λ,

Constant term c~2.5% is achievable for 12 λ_{μ}

T.Carli, C.Helsens, A.Henriques Correia, C.Solans: arXiv:1604.01415

Single particle resolution and response ($e/\gamma/\pi^{0}$)

- Reasonable performance of ECAL: ~17% sampling term, 1.3% constant term
- Tracking is not used for electrons

Calorimeters for tens-TeV physics. S.Chekanov (ANL)

Δ

Response to neutrons and K₁

Jet masses for highly boosted jets

- Simple observable constructed from energies and positions of jet constituents
 - requires high spatial resolution of jet constituents
 - sensitive to calorimeter granularity

- Critical for many searches by ATLAS & CMS
 - signal extraction, background rejection etc: boosted W, top, Higgs etc.

